Effects of rotary ultrasonic elliptical machining for side milling on the surface integrity of Ti-6Al-4V

Jiajia Liu1, Xinggang Jiang1, Xiong Han2, Ze Gao1, Deyuan Zhang1
1School of Mechanical Engineering and Automation, Beihang University, Beijing, China
2Chengdu Aircraft Industrial (Group) Co., Ltd., Chengdu, China

Tóm tắt

Ultrasonic elliptical vibration-assisted milling methods have recently attracted attention since they can be applied to difficult-to-cut materials. In this study, the effects of rotary ultrasonic elliptical machining parameters for side milling on Ti-6Al-4V titanium alloy machined surface integrity were investigated and compared with conventional machining for side milling. To determine the effects of rotary ultrasonic elliptical machining for side milling, roughness, topography, residual stress, microstructure, and microhardness of machined surface and subsurface were examined. Results show that rotary ultrasonic elliptical machining for side milling significantly improves the integrity of machined surfaces as a result of induced compressive residual stress, more pronounced plastic deformation, and work hardening of the machined surface. It was found that higher cutting speeds of up to 120 m/min and lower feed rates of approximately 0.02 mm/z achieve higher compressive residual stresses on the surface (− 221.21 MPa vs. 2.82 MPa), greater plastic deformation below the surface (up to 40 μm vs. less than 20 μm), and moderate surface work hardening (HV 425.85 vs. HV 414) using rotary ultrasonic elliptical machining for side milling compared to conventional machining for side milling. Finally, in relation to surface roughness (Ra), rotary ultrasonic elliptical machining for side milling was found to cause a slight deterioration of surface characteristics. The results of this study provide a better understanding of rotary ultrasonic elliptical machining for side milling of titanium alloy Ti-6Al-4V.

Tài liệu tham khảo

Moussaoui K, Mousseigne M, Senatore J, Chieragatti R, Monies F (2012) Influence of milling on surface integrity of Ti-6Al-4V—study of the metallurgical characteristics: microstructure and microhardness. Int J Adv Manuf Technol 67(5–8):1477–1489. https://doi.org/10.1007/s00170-012-4582-5 Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2–3):125–134. https://doi.org/10.1016/j.ijmachtools.2003.10.018 Sun J, Guo YB (2009) A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V. J Mater Process Technol 209(8):4036–4042. https://doi.org/10.1016/j.jmatprotec.2008.09.022 Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti–6% Al–4% V. J Mater Process Technol 166(2):188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012 Yang XY, Ren CZ, Wang Y, Chen G (2012) Experimental study on surface integrity of Ti-6AI-4V in high speed side milling. Trans Tianjin Univ 18(3):206–212. https://doi.org/10.1007/s12209-01201784-8 Wang F, Zhao J, Li A, Zhao J (2014) Experimental study on cutting forces and surface integrity in high-speed side milling ofTi-6Al-4VTitanium alloy. Mach Sci Technol 18(3):448–463. https://doi.org/10.1080/10910344.2014.926690 Jawahir IS, Brinksmeier E, M'Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann 60(2):603–626. https://doi.org/10.1016/j.cirp.2011.05.002 Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51(3):250–280. https://doi.org/10.1016/j.ijmachtools.2010.11.003 Sridhar BR, Devananda G, Ramachandra K, Bhat R (2003) Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834. J Mater Process Technol 139(1–3):628–634. https://doi.org/10.1016/s0924-0136(03)00612-5 Changfeng Y, Daoxia W, Liang T, Junxue R, Kaining S, Zhenchao Y (2013) Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6. Proc Inst Mech Eng B J Eng Manuf 227(4):483–493. https://doi.org/10.1177/0954405413475771 Yao CF, Tan L, Ren JX, Lin Q, Liang YS (2014) Surface integrity and fatigue behavior for high-speed milling Ti–10V–2Fe–3Al titanium alloy. J Fail Anal Prev 14(1):102–112 Liu G, Huang C, Zhu H, Liu Z, Liu Y, Li C (2017) The modified surface properties and fatigue life of Incoloy A286 face-milled at different cutting parameters. Mater Sci Eng A 704:1–9. https://doi.org/10.1016/j.msea.2017.07.072 Yang D, Liu Z (2017) Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V. Aeronaut J 122(1248):316–332. https://doi.org/10.1017/aer.2017.136 McClung RC (2007) A literature survey on the stability and significance of residual stresses during fatigue. Fatigue Fract Eng Mater Struct 30(3):173–205. https://doi.org/10.1111/j.1460-2695.2007.01102.x Zhuang WZ, Halford GR (2001) Investigation of residual stress relaxation under cyclic load. Int J Fatigue 23(1):31–37. https://doi.org/10.1016/S0142-1123(01)00132-3 Oosthuizen T, Nunco K, Conradie P, Dimitrov D (2016) The effect of cutting parameters on surface integrity in milling Ti6-Al-4V. S Afr J Ind Eng 27(4). https://doi.org/10.7166/27-4-1199 Wu GQ, Shi CL, Sha W, Sha AX, Jiang HR (2013) Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys. Mater Des 46:668–674. https://doi.org/10.1016/j.matdes.2012.10.059 Wagner L, Gregory JK (1994) Thermomechanical surface treatment of titanium alloys. Mater Sci Forum 163-165:159–172 Mantle AL, Aspinwall DK (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72(3):413–420 Liu J, Zhang DY, Qin LG, Yan LS (2012) Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). Int J Mach Tool Manu 53(1):141–150. https://doi.org/10.1016/j.ijmachtools.2011.10.007 Geng DX, Zhang DY, Li Z, Liu DP (2017) Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics 75:80–90. https://doi.org/10.1016/j.ultras.2016.11.011 Lu D, Wang Q, Wu Y, Cao J, Guo H (2014) Fundamental turning characteristics of Inconel 718 by applying ultrasonic elliptical vibration on the base plane. Mater Manuf Process 30(8):1010–1017. https://doi.org/10.1080/10426914.2014.973588 Moriwaki T, Shamoto E (1995) Ultrasonic elliptical vibration cutting. CIRP Ann Manuf Technol 44(1):31–34. https://doi.org/10.1016/S0007-8506(07)62269-0 Maurotto A, Wickramarachchi CT (2016) Experimental investigations on effects of frequency in ultrasonically-assisted end-milling of AISI 316L: a feasibility study. Ultrasonics 65:113–120. https://doi.org/10.1016/j.ultras.2015.10.012 Suárez A, Veiga F, de Lacalle LNL, Polvorosa R, Lutze S, Wretland A (2016) Effects of Ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-alloy 718. J Mater Eng Perform 25(11):5076–5086. https://doi.org/10.1007/s11665-016-2343-6 Wang Y, Gong H, Fang FZ, Ni H (2016) Kinematic view of the cutting mechanism of rotary ultrasonic machining by using spiral cutting tools. Int J Adv Manuf Technol 83(1–4):461–474. https://doi.org/10.1007/s00170-015-7549-5 Lu M, Wang H, Guan L, Lin J, Gu Y, Chen B, Zhao D (2018) Modeling and analysis of surface topography of Ti6Al4V alloy machining by elliptical vibration cutting. Int J Adv Manuf Technol 98:2759–2768. https://doi.org/10.1007/s00170-018-2452-5 Sharma V, Pandey PM (2017) Experimental investigations and statistical modeling of surface roughness during ultrasonic-assisted turning with self-lubricating cutting inserts. P I MECH ENG E-J MEC 095440891773812. https://doi.org/10.1177/0954408917738127 C-f Y, D-x W, Q-c J, X-c H, J-x R, Zhang D-h (2013) Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy. Trans Nonferrous Metals Soc China 23(3):650–660. https://doi.org/10.1016/s1003-6326(13)62512-1 Sharma V, Pandey PM (2016) Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel. Ultrasonics 70:172–182. https://doi.org/10.1016/j.ultras.2016.05.001 Velásquez JDP, Tidu A, Bolle B, Chevrier P, Fundenberger JJ (2010) Sub-surface and surface analysis of high speed machined Ti–6Al–4V alloy. Mater Sci Eng A 527(10–11):2572–2578. https://doi.org/10.1016/j.msea.2009.12.018 Arunachalam RM, Mannan MA, Spowage AC (2004) Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools. Int J Mach Tools Manuf 44(9):879–887. https://doi.org/10.1016/j.ijmachtools.2004.02.016 Zhang X, Lu Z, Peng Z, Sui H, Zhang D (2018) Correction to: development of a tool-workpiece thermocouple system for comparative study of the cutting temperature when high-speed ultrasonic vibration cutting Ti-6Al-4V alloys with and without cutting fluids. Int J Adv Manuf Technol 97(1–4):1591–1592. https://doi.org/10.1007/s00170-018-1854-8 Liu G, Huang C, Zou B, Wang X, Liu Z (2016) Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations. Surf Coat Technol 307:182–189. https://doi.org/10.1016/j.surfcoat.2016.08.086 Li X, Zhao P, Niu Y, Guan C (2016) Influence of finish milling parameters on machined surface integrity and fatigue behavior of Ti1023 workpiece. Int J Adv Manuf Technol 91(1–4):1297–1307. https://doi.org/10.1007/s00170-016-9818-3 Ahmed N, Mitrofanov AV, Babitsky VI, Silberschmidt VV (2006) Analysis of material response to ultrasonic vibration loading in turning Inconel 718. Mater Sci Eng A 424:318–325. https://doi.org/10.1016/j.msea.2006.03.025