Ảnh hưởng của liều dư lượng neonicotinoid (imidacloprid) lên tỷ lệ chuyển hóa của ong chúa Apis mellifera (Hymenoptera: Apidae)

Apidologie - Tập 51 - Trang 1091-1099 - 2020
Jonathan Vergara-Amado1, Catalina Manzi1, Lida Marcela Franco2, Sebastian C. Contecha2, Silvia Juliana Marquez2, Jaiber J. Solano-Iguaran1, Ronie E. Haro1, Andrea X. Silva1
1Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
2Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia

Tóm tắt

Ong là những tác nhân điều tiết chính trong việc duy trì đa dạng sinh học toàn cầu và an ninh lương thực. Nhiều bằng chứng cho thấy sự gia tăng tổn thất của các đàn ong mật và sự suy giảm số lượng của các loài thụ phấn khác. Các loại thuốc trừ sâu thuộc nhóm neonicotinoid đã được liên kết với những tổn thất này, nhưng ít nghiên cứu khám phá cách mà liều tiếp xúc dư lượng ảnh hưởng đến chuyển hóa năng lượng của ong chúa. Ở đây, chúng tôi đã nghiên cứu cách mà liều dư lượng neonicotinoid (imidacloprid), kết hợp với trạng thái sinh sản (chưa được thụ tinh và đã thụ tinh) ảnh hưởng đến chuyển hóa của ong chúa ong mật. Chúng tôi đã tiến hành thí nghiệm tương tự ở hai vị trí địa lý (Chile và Colombia) và phát hiện ra sự giảm đáng kể tỷ lệ chuyển hóa chuẩn (SMR) ở các ong chúa được điều trị thuốc trừ sâu (ong chúa tại Chile giảm 11.3% công suất watt; ong chúa tại Colombia giảm 11.7% công suất watt). Không có ảnh hưởng nào được tìm thấy khi so sánh điều kiện sinh sản đối với SMR. Chúng tôi sẽ làm nổi bật những hậu quả có thể có của việc hiệu suất thấp của ong chúa đối với sự ổn định của tổ ong.

Từ khóa

#Đàn ong #đa dạng sinh học #an ninh lương thực #thuốc trừ sâu #neonicotinoid #chuyển hóa năng lượng.

Tài liệu tham khảo

Alaux C., J.L. Brunet, C. Dussaubat, F. Mondet, S. Tchamitchan, et al. (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental microbiology 12(3): 774-782. Aliouane Y., A.K. El Hassani, V. Gary, C. Armengaud, M. Lambin, et al. (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environmental Toxicology and Chemistry: An International Journal 28(1): 113-122. Aufauvre J., B. Misme-Aucouturier, B. Viguès, C. Texier, F. Delbac, et al. (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 9(3): e91686. Ayres M.P., M.J. Lombardero. (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262(3): 263-286. Blacquiere T., G. Smagghe, C.A. Van Gestel, V. Mommaerts. (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4): 973-992. Brandt A., A. Gorenflo, R. Siede, M. Meixner, R. Büchler. (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of insect physiology 86: 40-47. Brown L.A., M. Ihara, S.D. Buckingham, K. Matsuda, D.B. Sattelle. (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. Journal of neurochemistry 99(2): 608-615. Buckingham S., B. Lapied, H. Corronc, F. Sattelle. (1997) Imidacloprid actions on insect neuronal acetylcholine receptors. Journal of experimental biology 200(21): 2685-2692. Carreck N.L., F.L. Ratnieks. (2014) The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? Journal of Apicultural Research 53(5): 607-614. Chaimanee V., J.D. Evans, Y. Chen, C. Jackson, J.S. Pettis. (2016) Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. Journal of insect physiology 89: 1-8. Chown S.L., K.J. Gaston. (1999) Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biological Reviews 74(1): 87-120. Cobey, S. W., Tarpy, D. R., & Woyke, J. (2013) Standard methods for instrumental insemination of Apis mellifera queens. Journal of Apicultural Research, 52(4): 1-18. Contreras H., T. Bradley. (2010) Transitions in insect respiratory patterns are controlled by changes in metabolic rate. Journal of Insect Physiology 56(5): 522-528. Cook S.C. (2019) Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects 10(1): 18. Crailsheim K. (1992) The flow of jelly within a honeybee colony. Journal of comparative physiology B 162(8): 681-689. Crall J.D., C.M. Switzer, R.L. Oppenheimer, A.N.F. Versypt, B. Dey, et al. (2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362(6415): 683-686. Derecka K., M.J. Blythe, S. Malla, D.P. Genereux, A. Guffanti, et al. (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8(7): e68191. Desneux N., A. Decourtye, J.-M. Delpuech. (2007) The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52: 81-106. Devine G.J., M.J. Furlong. (2007) Insecticide use: contexts and ecological consequences. Agriculture and Human values 24(3): 281-306. Dively G.P., A. Kamel. (2012) Insecticide residues in pollen and nectar of a cucurbit crop and their potential exposure to pollinators. Journal of agricultural and food chemistry 60(18): 4449-4456. Donahaye E. (1992) Physiological differences between strains of Tribolium castaneum selected for resistance to hypoxia and hypercarbia, and the unselected strain. Physiological Entomology 17(3): 219-229. Fischer J., T. Mueller, A.-K. Spatz, U. Greggers, B. Gruenewald, et al. (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PloS one 9(3): e91364. Forfert N., A. Troxler, G. Retschnig, L. Gauthier, L. Straub, et al. (2017) Neonicotinoid pesticides can reduce honeybee colony genetic diversity. PloS one 12(10): e0186109. Gibbs A.G., A.K. Chippindale, M.R. Rose. (1997) Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. Journal of Experimental Biology 200(12): 1821-1832. Girolami V., L. Mazzon, A. Squartini, N. Mori, M. Marzaro, et al. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. Journal of economic entomology 102(5): 1808-1815. Girolami V., M. Marzaro, L. Vivan, L. Mazzon, M. Greatti, et al. (2012) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. Journal of Applied Entomology 136(1-2): 17-26. Godfray H.C.J., T. Blacquiere, L.M. Field, R.S. Hails, S.G. Potts, et al. (2015) A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B: Biological Sciences 282(1818): 20151821. Hatjina F., C. Papaefthimiou, L. Charistos, T. Dogaroglu, M. Bouga, et al. (2013) Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie 44(4): 467-480. Hoffmann A., P. Parsons. (1989) An integrated approach to environmental stress tolerance and life-history variation: desiccation tolerance in Drosophila. Biological Journal of the Linnean Society 37(1-2): 117-136. Holman, L. (2012). Costs and constraints conspire to produce honest signaling: insights from an ant queen pheromone. Evolution: International Journal of Organic Evolution, 66(7): 2094-2105.) Jeschke P., R. Nauen, M. Schindler, A. Elbert. (2010) Overview of the status and global strategy for neonicotinoids. Journal of agricultural and food chemistry 59(7): 2897-2908. Keys E., W.J. McConnell. (2005) Global change and the intensification of agriculture in the tropics. Global environmental change 15(4): 320-337. Kirchner W. (1999) Mad-bee-disease? Sublethal effects of imidacloprid (Gaucho) on the behaviour of honeybees. Apidologie (France) 30(5): 421-422 Koo J., T.-G. Son, S.-Y. Kim, K.-Y. Lee. (2015) Differential responses of Apis mellifera heat shock protein genes to heat shock, flower-thinning formulations, and imidacloprid. Journal of Asia-Pacific Entomology 18(3): 583-589. Kovac H., A. Stabentheiner, S.K. Hetz, M. Petz, K. Crailsheim. (2007) Respiration of resting honeybees. Journal of insect physiology 53(12): 1250-1261. Laurino D., A. Manino, A. Patetta, M. Ansaldi, M. Porporato. (2010) Acute oral toxicity of neonicotinoids on different honey bee strains. Journal of Zoology 93(01): 99-102 Levene H. (1960) Robust tests for equality of variances.[In:] Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Eds. I. Olkin, H. Hotteling, Stanford University Press, Redwood City. Li Z., M. Li, J. He, X. Zhao, V. Chaimanee, et al. (2017) Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. Pesticide biochemistry and physiology 140: 1-8. Lighton J.R., R.J. Turner. (2004) Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. Journal of Experimental Biology 207(11): 1903-1913. Marzaro M., L. Vivan, A. Targa, L. Mazzon, N. Mori, et al. (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bulletin of Insectology 64(1): 119-126. Mullin C.A., M. Frazier, J.L. Frazier, S. Ashcraft, R. Simonds, et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PloS one 5(3): e9754. Pauls S.U., C. Nowak, M. Bálint, M. Pfenninger. (2013) The impact of global climate change on genetic diversity within populations and species. Molecular ecology 22(4): 925-946. Potts S.G., J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, et al. (2010) Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution 25(6): 345-353. Potts R., R.M. Clarke, S.E. Oldfield, L.K. Wood, N.H. de Ibarra, et al. (2018) The effect of dietary neonicotinoid pesticides on non-flight thermogenesis in worker bumble bees (Bombus terrestris). Journal of insect physiology 104: 33-39. Powner M.B., T.E. Salt, C. Hogg, G. Jeffery. (2016) Improving mitochondrial function protects bumblebees from neonicotinoid pesticides. PloS one 11(11): e0166531. Sánchez-Bayo F., K.A. Wyckhuys. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological conservation 232: 8-27. Sandrock C., M. Tanadini, L.G. Tanadini, A. Fauser-Misslin, S.G. Potts, et al. (2014) Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLOS one 9(8): e103592. Schmuck R., R. Schöning, A. Stork, O. Schramel. (2001) Risk posed to honeybees (Apis mellifera L, Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Management Science: formerly Pesticide Science 57(3): 225-238. Schneider C.W., J. Tautz, B. Grünewald, S. Fuchs. (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PloS one 7(1): e30023. Sibly R., P. Calow. (1989) A life-cycle theory of responses to stress. Biological Journal of the Linnean Society 37(1-2): 101-116. Siede R., M.D. Meixner, R. Büchler. (2012) Comparison of transcriptional changes of immune genes to experimental challenge in the honey bee (Apis mellifera). Journal of Apicultural Research 51(4): 320-328. Suchail S., D. Guez, L.P. Belzunces. (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry: An International Journal 20(11): 2482-2486. Team R.C. (2014) A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 3-900051-07-0. http://www.R-project.org. Tison L., M.-L. Hahn, S. Holtz, A. Rößner, U. Greggers, et al. (2016) Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environmental science & technology 50(13): 7218-7227. Vanbergen A.J., the Insect Pollinators Initiative. (2013) Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment 11(5): 251-259. Vitousek P.M., L.L. Loope, R. Westbrooks. (2017) Biological invasions as global environmental change. American Scientist 84: 468-478 Walsberg G., B. Wolf. (1995) Variation in the respiratory quotient of birds and implications for indirect calorimetry using measurements of carbon dioxide production. Journal of Experimental Biology 198(1): 213-219. Wilcoxon F. (1992) Individual comparisons by ranking methods, Breakthroughs in statistics, Springer, pp. 196-202. Williams G.R., A. Troxler, G. Retschnig, K. Roth, O. Yañez, et al. (2015) Neonicotinoid pesticides severely affect honey bee queens. Scientific reports 5: 14621. Woodcock B., J. Bullock, R. Shore, M. Heard, M. Pereira, et al. (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356(6345): 1393-1395. Yang E., Y. Chuang, Y. Chen, L. Chang. (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). Journal of economic entomology 101(6): 1743-1748. Zafeiridou G., G. Theophilidis. (2004) The action of the insecticide imidacloprid on the respiratory rhythm of an insect: the beetle Tenebrio molitor. Neuroscience letters 365(3): 205-209. Zafeiridou G., G. Theophilidis. (2006) A simple method for monitoring the respiratory rhythm in intact insects and assessing the neurotoxicity of insecticides. Pesticide biochemistry and physiology 86(3): 211-217.