Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium

M. Chithirai Pon Selvan1, N. Mohana Sundara Raju2, H. K. Sachidananda3
1Karpagam University, Coiambatore, India
2Mahendra Institute of Technology, Namakkal, India
3Department of Engineering, Manipal University, Dubai, 345050, United Arab Emirates

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hascalik A, Caydas U, Gurun H. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Materials & Design, 2007, 28: 1953–1957

Momber A, Kovacevic R. Principles of Abrasive Waterjet Machining. London: Springer-Verlag, 1998

Hashish M. A model for abrasive waterjet (AWJ) machining. Transactions of ASME Journal of Engineering Materials and Technology, 1989, 111(2): 154–162

Siores E, Wong W C K, Chen L, Wager J G. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques. Ann CIRP, 1996, 45(1): 215–218

Wang J. Abrasive Waterjet Machining of Engineering Materials. Uetikon-Zuerich: Trans Tech Publications, 2003

Azmir M A, Ahsan A K. Investigation on glass/epoxy composite surfaces machined by abrasive waterjet machining. Journal of Materials Processing Technology, 2008, 198(1–3): 122–128

Ma C, Deam R T. A correlation for predicting the kerf profile from abrasive waterjet cutting. Experimental Thermal and Fluid Science, 2006, 30(4): 337–343

Kovacevic R. Monitoring the depth of abrasive waterjet penetration. International Journal of Machine Tools & Manufacture, 1992, 32(5): 725–736

Hashish M. Optimization factors in abrasive waterjet machining. Transactions of the ASME: Journal of Engineering for Industry, 1991, 113: 29–37

Rozario Jegaraj J J, Ramesh Babu N. A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. Journal of Materials Processing Technology, 2007, 185(1–3): 217–227

Shanmugam D K, Wang J, Liu H. Minimization of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools & Manufacture, 2008, 48(14): 1527–1534

Shanmugam D K, Masood S H. An investigation of kerf characteristics in abrasive waterjet cutting of layered composites. International Journal of Material Processing Technology, 2009, 209(8): 3887–3893

Lemma E, Chen L, Siores E, Wang J. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. International Journal of Machine Tools & Manufacture, 2002, 42(7): 781–789

Wang J. Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. International Journal of Mechanical Sciences, 2007, 49(3): 306–316

Farhad K, Hamid K A. A statistical approach for predicting and optimizing depth of cut in AWJ machining for 6063-T6 Al alloy. World Academy of Science, Engineering and Technology, 2009, 59

Chithirai Pon Selvan M, Mohana Sundara Raju N. Selection of process parameters in abrasive waterjet cutting of copper. International Journal of Advanced Engineering Sciences and Technologies, 2011, 7(2): 254–257

Arola D, Ramulu M. A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composites. Journal of Engineering Materials and Technology, 1993, 45(66): 125–151

Wang J, Wong W C K. A study of abrasive waterjet cutting of metallic coated sheet steels. International Journal of Machine Tools & Manufacture, 1999, 39(6): 855–870

Hocheng H, Tsai H Y, Shiue J J, Wang B. Feasibility study of abrasive waterjet milling of fiber-reinforced plastics. Journal of Manufacturing Science and Engineering, 1997, 119: 133–142