Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana

Algal Research - Tập 28 - Trang 192-199 - 2017
Renhe Qiu1, Song Gao2, Paola A. Lopez3, Kimberly L. Ogden1
1Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, AZ 85721, USA
2Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
3Department of Bioengineering, University of California, Berkeley, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol., 79, 707, 10.1007/s00253-008-1518-y

Hamasaki, 1994, Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant, Appl. Biochem. Biotechnol., 799, 10.1007/BF02941850

Brown, 1996, Uptake of carbon dioxide from flue gas by microalgae, Energy Convers. Manag., 37, 1363, 10.1016/0196-8904(95)00347-9

Benemann, 1997, CO2 mitigation with microalgae systems, Energy Convers. Manag., 38, S475, 10.1016/S0196-8904(96)00313-5

Doucha, 2005, Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor, J. Appl. Phycol., 17, 403, 10.1007/s10811-005-8701-7

Borkenstein, 2011, Cultivation of Chlorella emersonii with flue gas derived from a cement plant, J. Appl. Phycol., 23, 131, 10.1007/s10811-010-9551-5

Cantrell, 2008, Livestock waste-to-bioenergy generation opportunities, Bioresour. Technol., 99, 7941, 10.1016/j.biortech.2008.02.061

de Godos, 2010, Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters, J. Hazard. Mater., 179, 1049, 10.1016/j.jhazmat.2010.03.112

Rawat, 2011, Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production, Appl. Energy, 88, 3411, 10.1016/j.apenergy.2010.11.025

Mulbry, 2008, Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers, Bioresour. Technol., 99, 8137, 10.1016/j.biortech.2008.03.073

Greenwell, 2010, Placing microalgae on the biofuels priority list: a review of the technological challenges, J. R. Soc. Interface, 7, 703, 10.1098/rsif.2009.0322

Chen, 2015, Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects, Appl. Energy, 155, 585, 10.1016/j.apenergy.2015.06.055

Singh, 2011, Mechanism and challenges in commercialisation of algal biofuels, Bioresour. Technol., 102, 26, 10.1016/j.biortech.2010.06.057

Griffiths, 2009, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493, 10.1007/s10811-008-9392-7

Neofotis, 2016, Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation, Algal Res., 15, 164, 10.1016/j.algal.2016.01.007

Ugwu, 2007, Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana, Photosynthetica, 45, 309, 10.1007/s11099-007-0052-y

Singh, 2011, Microalgae as second generation biofuel. A review, Agron. Sustain. Dev., 31, 605, 10.1007/s13593-011-0018-0

Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x

Chen, 1994, Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser., 109, 83, 10.3354/meps109083

Moheimani, 2013, Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors, J. Appl. Phycol., 25, 387, 10.1007/s10811-012-9873-6

Moheimani, 2011, Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures, Appl. Microbiol. Biotechnol., 90, 1399, 10.1007/s00253-011-3174-x

Khalil, 2010, Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea, World J. Microbiol. Biotechnol., 26, 1225, 10.1007/s11274-009-0292-z

Goldman, 1982, The effect of pH in intensive microalgal cultures. I. Biomass regulation, J. Exp. Mar. Biol. Ecol., 57, 1, 10.1016/0022-0981(82)90140-X

Azov, 1982, Effect of pH on inorganic carbon uptake in algal cultures, Appl. Environ. Microbiol., 43, 1300, 10.1128/AEM.43.6.1300-1306.1982

Bartley, 2014, pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms, J. Appl. Phycol., 26, 1431, 10.1007/s10811-013-0177-2

Spolaore, 2006, Optimization of Nannochloropsis oculata growth using the response surface method, J. Chem. Technol. Biotechnol., 81, 1049, 10.1002/jctb.1529

Davis, 2011, Techno-economic analysis of autotrophic microalgae for fuel production, Appl. Energy, 88, 3524, 10.1016/j.apenergy.2011.04.018

Quinn, 2013, Geographical assessment of microalgae biofuels potential incorporating resource availability, Bioenergy Res., 6, 591, 10.1007/s12155-012-9277-0

Venteris, 2014, A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction, Biomass Bioenergy, 64, 276, 10.1016/j.biombioe.2014.02.001

Unkefer, 2017, Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts, Algal Res., 22, 187, 10.1016/j.algal.2016.06.002

Rippka, 1979, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111, 1

Lammers, 2017, Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts, Algal Res., 22, 166, 10.1016/j.algal.2016.11.021

Eskilsson, 2000, Analytical-scale microwave-assisted extraction, J. Chromatogr. A, 902, 227, 10.1016/S0021-9673(00)00921-3

Patil, 2013, Optimization of microwave-enhanced methanolysis of algal biomass to biodiesel under temperature controlled conditions, Bioresour. Technol., 137, 278, 10.1016/j.biortech.2013.03.118

Galella, 1993, n-6 and n-3 fatty acid accumulation in thp-1 cell phospholipids, Biochim. Biophys. Acta, 1169, 280, 10.1016/0005-2760(93)90252-5

Gong, 2011, Biodiesel production with microalgae as feedstock: from strains to biodiesel, Biotechnol. Lett., 33, 1269, 10.1007/s10529-011-0574-z

Krisnangkura, 1986, A simple method for estimation of cetane index of vegetable oil methyl esters, J. Am. Oil Chem. Soc., 63, 552, 10.1007/BF02645752

Francisco, 2010, Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality, J. Chem. Technol. Biotechnol., 85, 395, 10.1002/jctb.2338

Ramos, 2009, Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol., 100, 261, 10.1016/j.biortech.2008.06.039

Silva, 2013, Enhanced production of green tide algal biomass through additional carbon supply, PLoS One, 8

Lam, 2013, Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production, Int. J. Greenhouse Gas Control, 14, 169, 10.1016/j.ijggc.2013.01.016

Davis, 2016

Hoekman, 2012, Review of biodiesel composition, properties, and specifications, Renew. Sust. Energ. Rev., 16, 143, 10.1016/j.rser.2011.07.143

Gopinath, 2009, Relating the cetane number of biodiesel fuels to their fatty acid composition: a critical study, Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 223, 565, 10.1243/09544070JAUTO950

Knothe, 2003, Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester, Fuel, 82, 971, 10.1016/S0016-2361(02)00382-4

Knothe, 2006, Analyzing biodiesel: standards and other methods, J. Am. Oil Chem. Soc., 83, 823, 10.1007/s11746-006-5033-y

Balat, 2011, Potential alternatives to edible oils for biodiesel production - a review of current work, Energy Convers. Manag., 52, 1479, 10.1016/j.enconman.2010.10.011

Elser, 2000, Nutritional constraints in terrestrial and freshwater food webs, Nature, 408, 578, 10.1038/35046058

Lourenco, 2004, Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors, Eur. J. Phycol., 39, 17, 10.1080/0967026032000157156

Templeton, 2015, Nitrogen-to-protein conversion factors revisited for applications of microalgal biomass conversion to food, feed and fuel, Algal Res., 11, 359, 10.1016/j.algal.2015.07.013

Laurens, 2015

Ogbonda, 2007, Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp, Bioresour. Technol., 98, 2207, 10.1016/j.biortech.2006.08.028

Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001

Sialve, 2009, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnol. Adv., 27, 409, 10.1016/j.biotechadv.2009.03.001