Ảnh hưởng của việc bổ sung nitơ đến khả năng bộc lộ đất ở các đồng cỏ tiêu biểu của Cao nguyên Loess

Journal of Mountain Science - Tập 19 - Trang 3503-3516 - 2022
Pan-pan Li, Bing Wang1,2, Yan-fen Yang1,2, Guo-bin Liu1,2
1State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
2State Key Laboratory of Soil Erosion and Dryland Farming On the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China

Tóm tắt

Sự lắng đọng nitơ sẽ làm giảm hạn chế nitơ trong các hệ sinh thái trên cạn và ảnh hưởng lớn đến sự phát triển của thực vật, qua đó gây ra sự xói mòn đất. Việc làm rõ các tác động của việc bổ sung nitơ đến rễ cây và tính chất đất đối với quá trình xói mòn đất là rất quan trọng. Một thí nghiệm bổ sung nitơ đã được thực hiện trên đồng cỏ có sự thống trị của Bothriochloa ischaemum (Linn.) Keng (BI), nơi nhận được 0, 2.5, 5 và 10 g N m−2 yr−1 (N0, N2.5, N5 và N10, tương ứng) trong ba năm liên tiếp. Sau đó, tổng cộng 150 mẫu đất không bị xáo trộn đã được thu thập (bao gồm cả mẫu đất kiểm soát không) và được ngâm trong nước chảy để kiểm tra khả năng bộc lộ của chúng dưới sáu mức độ ứng suất cắt (từ 10.2 Pa đến 29.9 Pa). Việc bổ sung nitơ trong ba năm đã làm tăng mật độ khối lượng đất, độ kết dính của đất và nitrat nitơ, đồng thời giảm hệ số dẫn nước bão hòa, các khối đất ổn định trong nước, carbon hữu cơ trong đất, nitơ tổng và nitơ amoni. Mật độ khối lượng rễ và đường kính rễ giảm với việc bổ sung nitơ. Độ dài rễ, diện tích bề mặt và mật độ thể tích của các phương pháp N0 và N5 lớn hơn so với các phương pháp khác, trong khi rễ cây bị ức chế đáng kể bởi N10. Ngoài ra, khả năng bộc lộ đất (Dc) và khả năng xói mòn rãnh (Kr) của các phương pháp N0 và N5 thấp hơn đáng kể so với các phương pháp N2.5 và N10; trong đó, Dc (0.020 kg m−2 s−1) của phương pháp N0 thấp hơn 69.0%, 24.3% và 66.8% so với các phương pháp N2.5, N5 và N10, tương ứng. Kr của phương pháp N0 là 0.0012 s m−1, thấp hơn 72.1%, 25.0% và 70.0% so với các phương pháp còn lại. Nghiên cứu này cho thấy việc tăng cường bổ sung nitơ có thể làm trầm trọng thêm sự xói mòn đất ở các giai đoạn đầu (khoảng 2.5 g N m−2 yr−1) và muộn (hơn 10 g N m−2 yr−1). Tuy nhiên, khi tỷ lệ bổ sung nitơ khoảng 5 g m−2 yr−1, sự xói mòn đất có thể bị ức chế do phản ứng của rễ cây và đất với việc bổ sung nitơ.

Từ khóa

#nitơ #xói mòn đất #Đồng cỏ #Bothriochloa ischaemum #Cao nguyên Loess

Tài liệu tham khảo

Ackerman D, Millet DB, Chen X (2019) Global Estimates of Inorganic Nitrogen Deposition Across Four Decades. Global Biogeochem Cy 33:100–107. https://doi.org/10.1029/2018gb005990 Bobbink R, Hicks K, Galloway J, et al. (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20(01): 30–59. https://doi.org/10.1890/08-1140.1 Galloway JN, Dentener FJ, Capone DG, et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70(2): 153–226. https://doi.org/10.1007/s10533-004-0370-0 Cai SM, Wang JJ, Lv WG, et al. (2020) Nitrogen fertilization alters the effects of earthworms on soil physicochemical properties and bacterial community structure. Appl Soil Ecol 150. https://doi.org/10.1016/j.apsoil.2019.103478 Cheng Y, Wang J, Wang JY, et al. (2020) Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons. Earth-Sci Rev 201. https://doi.org/10.1016/j.earscirev.2019.103033 De Baets S, Poesen J, Gyssels G, et al. (2006) Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology 76(1–3):54–67. https://doi.org/10.1016/j.geomorph.2005.10.002 De Baets S, Poesen J (2010) Empirical models for predicting the erosion-reducing effects of plant roots during concentrated flow erosion. Geomorphology 118(3): 425–432. https://doi.org/10.1016/j.geomorph.2010.02.011 Deng L, Huang C, Kim DG, et al. (2019) Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools. Glob Chang Biol 26:2613–2629. https://doi.org/10.1111/gcb.14970 Dias T, Clemente A, Martins-Loucao MA, et al. (2014) Ammonium as a driving force of plant diversity and ecosystem functioning: observations based on 5 years’ manipulation of N dose and form in a Mediterranean ecosystem. PLoS One 9:e92517. https://doi.org/10.1371/journal.pone.0092517 Erktan A, Balmot J, Merino-Martín L et al. (2017) Immediate and long-term effect of tannins on the stabilization of soil aggregates. Soil Biol Biochem 105:197–205. https://doi.org/10.1016/j.soilbio.2016.11.017 Gao H, Huang YM (2020) Impacts of the Three-North shelter forest program on the main soil nutrients in Northern Shaanxi China: A meta-analysis. Forest Ecol Manag 458. https://doi.org/10.1016/j.foreco.2019.117808 Guan B, Xie BH, Yang SS, et al. (2019) Effects of five years’ nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta. Ecol Eng 136:160–166. https://doi.org/10.1016/j.ecoleng.2019.06.016 Gyssels G, Poesen J, Liu G, et al. (2006) Effects of cereal roots on detachment rates of single- and double-drilled topsoils during concentrated flow. Eur J Soil Sci 57:381–391. https://doi.org/10.1111/j.1365-2389.2005.00749.x Han X, Tsunekawa A, Tsubo M, et al. (2011) Aboveground biomass response to increasing nitrogen deposition on grassland on the northern Loess Plateau of China. Acta Agr Scand B-S P 61:112–121. https://doi.org/10.1080/09064710903544201 He CE, Lu LL, Jin Y, et al. (2013) Effects of nitrogen on root development and contents of bioactive compounds in Salvia miltiorrhiza Bunge. Crop Sci 53:2028–2039. https://doi.org/10.2135/cropsci2012.11.0659 Jiang FS, He KW, Lin JH, et al. (2019) A comparison of the effectiveness of the roots of two grass species in reducing soil erosion on alluvial fans in south-east China. Hydrol Process 34:96–110. https://doi.org/10.1002/hyp.13575 Knapen A, Poesen J, Govers G, et al. (2007) Resistance of soils to concentrated flow erosion: A review. Earth-Sci Rev 80:75–109. https://doi.org/10.1016/j.earscirev.2006.08.001 Kokko EG, Volkmar KM, Gowen BE, et al. (1993) Determination of total root surface area in soil core samples by image analysis. Soil Till Res 26:33–43. https://doi.org/10.1016/0167-1987(93)90084-3 Levine HB, Cobb JM (1980) Ketoconazole in early and late murine coccidioidomycosis. Rev Infect Dis 2:546–550. https://doi.org/10.1093/clinids/2.4.546 Li PP, Wang B, Liu GB, et al. (2017) Effects of nitrogen addition on the population characteristics of Bothriochloa ischaemum and soil properties. Sci Soil Water Conserv 2: 35–42. (In Chinese) https://doi.org/10.16843/j.sswc.2017.02.005 Li YD, Wang B, Dou S, et al. (2019) Divergent responses of soil carbon and nitrogen pools to short-term nitrogen addition between two plantations in Northeast China. Int J Agr Biol Eng 12:82–90. https://doi.org/10.25165/j.ijabe.20191206.5266 Li Y, Xu XQ, Zhu XM, et al. (1993) Plant roots and soil antiscourability. J Soil Water Conserv 7:11–18. (In Chinese) https://doi.org/10.13870/j.cnki.stbcxb.1993.03.002 Li ZW, Zhang GH, Geng R, et al. (2015) Land use impacts on soil detachment capacity by overland flow in the Loess Plateau, China. Catena 124:9–17. https://doi.org/10.1016/j.catena.2014.08.019 Li ZW, Zhang GH, Geng R, et al. (2015). Spatial heterogeneity of soil detachment capacity by overland flow at a hillslope with ephemeral gullies on the Loess Plateau. Geomorphology 248: 264–272. https://doi.org/10.1016/j.geomorph.2015.07.036 Liu XJ, Duan L, Mo JM, et al. (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002 Liu Y, Li P, Wang GL, et al. (2016) Above- and below-ground biomass distribution and morphological characteristics respond to nitrogen addition in Pinus tabuliformis. NZ J Forestry Sci 46(25). https://doi.org/10.1186/s40490-016-0083-x Monks CD, Basden T, Hatton JL, et al. (1997) Cover crop response to late-season planting and nitrogen application. J Prod Agric 10:289–293. https://doi.org/10.2134/jpa1997.0289 Nadelhoffer KJ (2000) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytol 147:131–139. https://doi.org/10.1046/j.1469-8137.2000.00677.x Nearing MA, Foster GR, Lane LJ, et al. (1989) A process-based soil-erosion model for usda-water erosion prediction project technology. T ASABE 32:1587–1593. https://doi.org/10.13031/2013.31195 Owoputi LO, Stolte WJ (1995) Soil detachment in the physically-based soil-erosion process — a review. T ASABE 38:1099–1110. https://doi.org/10.13031/2013.27927 Qin J, Liu HM, Zhao JN, et al. (2020) The roles of bacteria in soil organic carbon accumulation under nitrogen deposition in Stipa baicalensis Steppe. Microorganisms 8(3): 326. https://doi.org/10.3390/microorganisms8030326 Reay DS, Dentener F, Smith P, et al. (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437. https://doi.org/10.1038/ngeo230 Schroder JL, Zhang H, Girma K, et al. (2011) Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J 75:957–964. https://doi.org/10.2136/sssaj2010.0187 Sun XC, Chen FJ, Yuan LX, et al. (2020) The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta 251:84. https://doi.org/10.1007/s00425-020-03376-4 Thompson CA, Whitney DA (2008) Effects of 30 years of cropping and tillage systems on surface soil test changes. Commun Soil Sci Plan 31:241–257. https://doi.org/10.1080/00103620009370433 Tian QY, Chen FJ, Liu JX, et al. (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951. https://doi.org/10.1016/j.jplph.2007.02.011 Wang B, Li PP, Huang CH, et al. (2020) Effects of root morphological traits on soil detachment for ten herbaceous species in the Loess Plateau. Sci Total Environ 754(14):142304. https://doi.org/10.1016/j.scitotenv.2020.142304 Wang B, Shen QR (2012) Effects of ammonium on the root architecture and nitrate uptake kinetics of two typical lettuce genotypes grown in hydroponic systems. J Plant Nutr 35:1497–1508. https://doi.org/10.1080/01904167.2012.689910 Wang B, Zhang GH, Yang YF, et al. (2018a) Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agr Ecosyst Environ 266:68–75. https://doi.org/10.1016/j.agee.2018.07.016 Wang B, Zhang GH, Zhang XC, et al. (2014) Effects of near soil surface characteristics on soil detachment by overland flow in a natural succession grassland. Soil Sci Soc Am J 78:589–597. https://doi.org/10.2136/sssaj2013.09.0392 Wang G, Fahey TJ, Xue S, et al. (2013) Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 171:583–590. https://doi.org/10.1007/s00442-012-2441-6 Wang GL, Xue S, Liu F, et al. (2017) Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum. Plant Soil 415. https://doi.org/10.1007/s11104-016-3160-2 Wang GZ, Li HG, Christie P, et al. (2016) Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil 415:1–12. https://doi.org/10.1007/s11104-016-3139-z Wang R, Dungait JAJ, Creamer CA, et al. (2015) Carbon and nitrogen dynamics in soil aggregates under long-term nitrogen and water addition in a temperate steppe. Soil Sci Soc Am J 79:527–535. https://doi.org/10.2136/sssaj2014.09.0351 Wang YY, Deng L, Wu GL, et al. (2018b) Large-scale soil organic carbon mapping based on multivariate modelling: The case of grasslands on the Loess Plateau. Land Degrad Dev 29:26–37. https://doi.org/10.1002/ldr.2833 Wang YB, Meng B, Zhong SZ, et al. (2018c) Aboveground biomass and root/shoot ratio regulated drought susceptibility of ecosystem carbon exchange in a meadow steppe. Plant Soil 432:259–272. https://doi.org/10.1007/s11104-018-3790-7 Wei Y, Tong YA, Qiao L, et al. (2010) Preliminary estimate of the atmospheric nitrogen deposition in different ecological regions of Shaanxi Province. J Agro-Environ Sci 29(4):795–800. (In Chinese) 1672–2043(2010)04-0795–06 Wu QC, Zhang CZ, Yu ZH, et al. (2018) Effects of elevated CO2 and nitrogen addition on organic carbon and aggregates in soil planted with different rice cultivars. Plant Soil 432:245–258. https://doi.org/10.1007/s11104-018-3801-8 Xiao HB, Shi ZH, Li ZW, et al. (2020) Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China. Appl Soil Ecol 150. https://doi.org/10.1016/j.apsoil.2019.103484 Yu GR, Jia YL, He NP et al. (2019) Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat Geosci 12:424–429. https://doi.org/10.1038/s41561-019-0352-4 Yuan HZ, Ge TD, Chen CY, et al. (2012) Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol 78:2328–2336. https://doi.org/10.1128/AEM.06881-11 Zhang BJ, Zhang GH, Yang HY, et al. (2019) Temporal variation in soil erosion resistance of steep slopes restored with different vegetation communities on the Chinese Loess Plateau. Catena 182. https://doi.org/10.1016/j.catena.2019.104170 Zhang GH, Tang KM, Ren ZP, et al. (2013) Impact of grass root mass density on soil detachment capacity by concentrated flow on steep slopes. T ASABE 56:927–934. https://doi.org/10.13031/trans.56.9566 Zhang JY, Ai ZM, Liang CT, et al. (2017) Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau. Geoderma 308: 112–119. https://doi.org/10.1016/j.geoderma.2017.08.034 Zhang L, Zhu TB, Liu X, et al. (2020) Limited inorganic N niche partitioning by nine alpine plant species after long-term nitrogen addition. Sci Total Environ 718:137270. https://doi.org/10.1016/j.scitotenv.2020.137270 Zhao SC, Qiu SJ, Cao CY, et al. (2014) Responses of soil properties, microbial community, and crop yields to various rates of nitrogen fertilization in a wheat-maize cropping system in north-central China. Agr Ecosyst Environ 194:29–37. https://doi.org/10.1016/j.agee.2014.05.006