Effects of neonicotinoids and fipronil on non-target invertebrates

Springer Science and Business Media LLC - Tập 22 Số 1 - Trang 68-102 - 2015
Lennard Pisa1, V. Amaral-Rogers2, Luc Belzunces3, Jean‐Marc Bonmatin4, Craig A. Downs5, Dave Goulson6, David P. Kreutzweiser7, Christian H. Krupke8, Matthias Liess9, Melanie McField10, Christy A. Morrissey11, Dominique A. Noome12, Josef Settele13, Noa Simon‐Delso14, John D. Stark15, J.P. van der Sluijs16, Hans Van Dyck17, Martin Wiemers13
1Environmental Sciences, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
2Buglife, Bug House, Ham Lane, Orton Waterville, Peterborough, PE2 5UU, UK
3Laboratoire de Toxicologie Environnementale, INRA, UR 406 Abeilles & Environnement, Site Agroparc, 84000, Avignon, France
4Centre de Biophysique Moléculaire, UPR 4301 CNRS, affiliated to Orléans University and to INSERM, 45071, Orléans cedex 02, France
5Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
6School of Life Sciences, University of Sussex, Sussex, BN1 9RH, UK
7Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste Marie, ON, P6A 2E5, Canada
8Department of Entomology, Purdue University, West Lafayette, IN, USA
9Department System-Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
10Healthy Reefs for Healthy People Initiative, Smithsonian Institution, Belize City, Belize
11Department of Biology and School of Environment and Sustainability, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
12Task Force on Systemic Pesticides, 46, Pertuis-du-Sault, 2000, Neuchâtel, Switzerland
13Department of Community Ecology, Helmholtz-Centre for Environmental Research – UFZ, Theodor-Lieser-Str. 4, 06120 Halle, Germany
14Beekeeping Research and Information Centre (CARI), Place Croix du Sud 4, 1348, Louvain-la-Neuve, Belgium
15Puyallup Research and Extension Centre, Washington State University, Puyallup, WA, 98371, USA
16Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
17Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université Catholique de Louvain (UCL), Croix du Sud 4-5, bte L7.07.04, 1348, Louvain-la-Neuve, Belgium

Tóm tắt

AbstractWe assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.

Từ khóa


Tài liệu tham khảo

Abbas N, Shad SA, Razaq M (2012) Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pestic Biochem Physiol 103:181–188

Abbott VA, Nadeau JL, Higo HA, Winston ML (2008) Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae). J Econ Entomol 101:784–796

Aebischer NJ (1990) Assessing pesticide effects on non-target invertebrates using long-term monitoring and time-series modelling. Funct Ecol 4:369–373

Ahmad M, Sayyed AH, Saleem MA, Ahmad M (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 27:1367–1372

Ahmad M, Rafiq M, Arif MI, Sayyed AH (2011) Toxicity of some commonly used insecticides against Coccinella undecimpunctata (Coleoptera: Coccinellidae). Pak J Zool 43:1161–1165

Ahmad S, Ansari MS, Ahmad N (2013) Acute toxicity and sublethal effects of the neonicotinoid imidacloprid on the fitness of Helicoverpa armigera (Lepidoptera: Noctuidae). Int J Trop Insect Sci 33:264–275

Aizen, Harder (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918

Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y (2010) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12:774–782

Albajes R, López C, Pons X (2003) Predatory fauna in cornfields and response to imidacloprid seed treatment. J Econ Entomol 96:1805–1813

Alexander AC, Heard K, Culp JM (2008) Emergent body size of mayfly survivors. Freshw Biol 53:171–180

Aliouane Y, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M (2009) Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environ Toxicol Chem 28:113–122

Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682

Anon (2012) EFSA Statement on the findings in recent studies investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently authorised in Europe. EFSA Journal 10:2752

Ansari MS, Ali H, Shafqat S (2012) Insecticidal effect on a population of Spilarctia obliqua (Lepidoptera: Arctiidae). Entomol Res 42:330–338

Apenet, (2010) http://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/3280

Arain MS, Hu XX, Li GQ (2014) Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides. Bull Environ Contam Toxicol 92:190–195

Arena, M., and Sgolastra, F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicol, 1–11

Asaro C, Creighton J (2011) Use of systemic fipronil and imidacloprid to control regeneration pests of loblolly pine. J Econ Entomol 104:1272–1279

Ashauer R, Hintermeister A, Potthoff E, Esche BI (2011) Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquat Toxicol 103:38–45

Aufauvre J, Biron DG, Vidau C, Fontbonne R, Roudel M, Diogon M, Vigues B, Belzunces LP, Delbac F, Blot N (2012) Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee. Scientific reports 2, srep00326-srep00326

Balderrama N, Nunez J, Giurfa M, Torrealba J, Dealbornoz EG, Almeida LO (1996) A deterrent response in honeybee (Apis mellifera) foragers: dependence on disturbance and season. J Insect Physiol 42:463–470

Barbara G, Grünewald B, Paute S, Gauthier M, Raymond-Delpech V (2008) Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 8:19–29

Barbieri RF, Lester PJ, Miller AS, Ryan KG (2013) A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proc R Soc B Biol Sci 28:20132157

Bartlett MD, Briones MJI, Neilson R, Schmidt O, Spurgeon D, Creamer RE (2010) A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol 46:67–73

Baylay AJ, Spurgeon DJ, Svendsen C, Griffin JL, Swain SC, Sturzenbaum SR, Jones OAH (2012) A metabolomics based test of independent action and concentration addition using the earthworm Lumbricus rubellus. Ecotoxicology 21:1436–1447

Beketov MA, Liess M (2008) Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Arch Environ Contam Toxicol 55:247–253

Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110:11039–11043. doi:10.1073/pnas.1305618110

Belzunces LP (2006) Rapport d’étude du programme Etude comparée des impacts de trois classes d’insecticides néonicotinoïdes chez l’abeille. Programme communautaire sur l’apiculture Année 2006

Belzunces LP, Tchamitchian S, Brunet JL (2012) Neural effects of insecticides in the honey bee. Apidologie 43:348–370

Benzidane Y, Touinsi S, Motte E, Jadas-Hécart A, Communal PY, Leduc L, Thany SH (2010) Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin. Pest Manag Sci 66:1351–1359

Berghahn R, Mohr S, Hübner V, Schmiediche R, Schmiedling I, Svetich-Will E, Schmidt R (2012) Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquat Toxicol 122:56–66

Biocca M, Conte E, Pulcini P, Marinelli E, Pochi D (2011) Sowing simulation tests of a pneumatic drill equipped with systems aimed at reducing the emission of abrasion dust from maize dressed seed. J Environ Sci Health B 46:438–448

Bloem S, Mizell RF, Bloem KA, Hight SD, Carpenter JE (2005) Laboratory evaluation of insecticides for control of the invasive Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla Entomol 88:395–400

Boggs CL (2003) Environmental variation, life histories, and allocation. In: Boggs CL, Watt WB, Ehrlich PR (eds) Butterflies: ecology and evolution taking flight. The University of Chicago Press, Chicago, pp 185–206

Bonmatin JM, Moineau I, Charvet R, Colin ME, Fleche C, Bengsch ER et al (2005) Behaviour of imidacloprid in fields: toxicity for honey bees. In: Lichtfourse E, Schwarzbauer J, Robert D (eds) In environmental chemistry: green chemistry and pollutants in ecosystems. Springer, New York, pp 483–494

Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser D, Krupke C, Liess M, Long E, Marzaro M, Mitchell E, Noome D, Simon-Delso N, Tapparo A (2014) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res. doi:10.1007/s11356-014-3332-7 (this issue)

Bordereau-Dubois B, List O, Calas-List D, Marques O, Communal PY, Thany SH, Lapied B (2012) Transmembrane potential polarization, calcium influx and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nAChR to the neonicotinoid insecticides. J Pharmacol Exp Ther. doi:10.1124/jpet.111.188060

Bortolotti L, Montanari R, Marcelino J, Medrzycki P, Maini S, Porrini C (2003) Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insect 56:63–67

Bosch J, Kemp WP (2006) Bee population returns and cherry yields in an orchard pollinated with Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 99:408–413

Bostanian NJ, Hardman JM, Ventard E, Racette G (2005) The intrinsic toxicity of several neonicotinoids to Lygus lineolaris and Hyaliodes vitripennis, a phytophagous and a predacious mired. Pest Manag Sci 61:991–996

Böttger R, Feibicke M, Schaller J, Dudel G (2013) Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosms. Ecotoxicol Environ Saf 93:93–100

Braun G, Bicker G (1992) Habituation of an appetitive reflex in the honeybee. J Neurophysiol 67:588–598

Breeze TD, Bailey AP, Balcombe KG et al (2011) Pollination services in the UK: how important are honeybees? Agric Ecosyst Environ 142:137–143

Brittain C, Bommarco R, Vighi M, Settele J, Potts SG (2010a) Organic farming in isolated landscapes does not benefit flower-visiting insects and pollination. Biol Conserv 143:1860–1867. doi:10.1016/j.biocon.2010.04.029

Brittain CA, Vighi M, Bommarco R, Settele J, Potts SG (2010b) Impacts of a pesticide on pollinator species richness at different spatial scales. Basic App Ecol 11:106–115

Brooks DR, Bater JE, Clark SJ, Monteith DT, Andrews C, Corbett SJ, Beaumont DA, Chapman JW (2012) Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J Appl Ecol 49:1009–1019

Broznic D, Marinic J, Tota M, Juresic GC, Petkovic O, Milin C (2012) Hysteretic behaviour of imidacloprid sorption–desorption in soils of Croatian coastal regions. Soil Sediment Contam 21:850–871

Brunet JL, Badiou A, Belzunces LP (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee Apis mellifera L. Pest Manag Sci 61:742–748

Brunner JF, Beers EH, Dunley JE, Doerr M, Granger K (2005) Role of neonicotinyl insecticides in Washington apple integrated pest management. Part I. Control of lepidopteran pests. J Insect Sci 5

Bryden J, Gill RJ, Mitton RAA, Raine NE, Jansen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16:1463–1493

Byrne FJ, Toscano NC (2007) Lethal toxicity of systemic residues of imidacloprid against Homalodisca vitripennis (Homoptera: Cicadellidae) eggs and its parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae). Biol Control 43:130–135

Calderone NW (2012) Insect pollinated crops, insect pollinators and us agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS One 7:e37235. doi:10.1371/journal.pone.0037235

Canadian Council of Ministers of the Environment (2007) Canadian water quality guidelines: IMIDACLOPRID. Scientific supporting document. ISBN 978-1-896997-71-1 PDF

Capowiez Y, Berard A (2006) Assessment of the effects of imidacloprid on the behaviour of two earthworm species (Aporrectodea nocturna and Allolobophora icterica) using 2D terraria. Ecotoxicol Environ Saf 64:198–206

Capowiez Y, Rault M, Mazzia C, Belzunces L (2003) Earthworm behaviour as a biomarker—a case study using imidacloprid. Pedobiologia 47:542–547

Capowiez Y, Rault M, Costagliola G, Mazzia C (2005) Lethal and sublethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icterica). Biol Fertil Soils 41:135–143

Capowiez Y, Bastardie F, Costagliola G (2006) Sublethal effects of imidacloprid on the burrowing behaviour of two earthworm species: modifications of the 3D burrow systems in artificial cores and consequences on gas diffusion in soil. Soil Biol Biochem 38:285–293

Capowiez Y, Dittbrenner N, Rault M, Triebskorn R, Hedde M, Mazzia C (2010) Earthworm cast production as a new behavioural biomarker for toxicity testing. Environ Pollut 158:388–393

Casida JE (2011) Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem 59:2923–2931

Chagnon M, Gingras J, de Oliveira D (1993) Complementary aspects of strawberry pollination by honey and indigenous bees (Hymenoptera). J Econ Entomol 86:416–420

Charmillot PJ, Pasquier D, Salamin C, Ter-Hovannesyan A (2007) Ovicidal and larvicidal effectiveness of insecticides applied by dipping apples on the small fruit tortrix Grapholita lobarzewskii. Pest Manag Sci 63:677–681

Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vannier F, Locker D, Decoville M (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48(7):4096–4102

Chen RZ, Klein MG (2012) Efficacy of insecticides against the rice stem-borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and use of sex pheromones to time accurately the yearly application. Int J Pest Manag 58:353–359

Chen XD, Culbert E, Herbert V, Stark JD (2010) Mixture effects of the adjuvant R-11 and the insecticide imidacloprid on population growth rate and other parameters of Ceriodaphnia dubia. Ecotoxicol Environ Saf 73:132–137

Cheng XA, Chang C, Dai SM (2010) Responses of striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), from Taiwan to a range of insecticides. Pest Manag Sci 66:762–766

Chowdhury S, Mukhopadhyay S, Bhattacharyya A (2012) Degradation dynamics of the insecticide: Clothianidin (Dantop 50 % WDG) in a tea field ecosystem. Bull Environ Contam Toxicol 89:340–343

Cichon LB, Soleno J, Anguiano OL, Garrido SA, Montagna CM (2013) Evaluation of cytochrome P450 activity in field populations of Cydia pomonella (Lepidoptera: Tortricidae) resistant to azinphosmethyl, acetamiprid, and thiacloprid. J Econ Entomol 106:939–944

Coleman DC, Ingham ER (1988) Carbon, nitrogen, phosphorus and sulphur cycling in terrestrial ecosystems. Biogeochemistry 5:3–6

Colin ME, Bonmatin JM, Moineau I, Gaimon C, Brun S, Vermandere JP (2004) A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch Environ Contam Toxicol 47:387–395

Couvillon MJ, Barton SN, Cohen JA, Fabricius OK, Kaercher MH, Cooper LS, Silk MJ, Helantera H, Ratnieks FLW (2010) Alarm pheromones do not mediate rapid shifts in honey bee guard acceptance threshold. J Chem Ecol 36:1306–1308

Cox L, Koskinen WC, Yen PY (1997) Sorption–desorption of imidacloprid and its metabolites in soils. J Agric Food Chem 45:1468–1472

Cox L, Hermosin MC, Cornejo J (2004) Influence of organic amendments on sorption and dissipation of imidacloprid in soils. Int J Environ Anal Chem 84:95–102

Cresswell JE (2011) A meta-analysis of experiments testing the effects of neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20:149–154

Cresswell JE, Thompson H (2012) Comment on “A common pesticide decreases foraging success and survival in honey bees”. Science 337:1453

Cresswell JE, Desneux N, van Engelsdorp D (2012a) Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hill’s epidemiological criteria. Pest Manag Sci 68:819–827

Cresswell JE, Page CJ, Uygun MB, Holmbergh M, Li Y, Wheeler JG, Laycock I, Pook CJ, De Ibarra NH, Smirnoff N, Tyler CR (2012b) Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology 115:365–371

Cutler GC, Scott-Dupree C (2007) Exposure to clothianidin seed-treated canola has no long-term impact on honey bees. J Econ Entomol 100:765–772

Davis BNK, Lakhani KH, Yates TJ (1991a) The hazards of insecticides to butterflies of field margins. Agric Ecosyst Environ 36:151–161

Davis BNK, Lakhani KH, Yates TJ, Frost AJ (1991b) Bioassays of insecticide spray drift: the effects of wind speed on the mortality of Pieris brassicae larvae (Lepidoptera) caused by diflubenzuron. Agric Ecosyst Environ 36:141–149

Davis BNK, Lakhani KH, Yates TJ, Frost AJ, Plant RA (1993) Insecticide drift from ground-based, hydraulic spraying of peas and brussels sprouts: bioassays for determining buffer zones. Agric Ecosyst Environ 43:93–108

Decourtye A, Devillers J (2010) Ecotoxicology of neonicotinoids insecticides in the bees. In: Thany S (ed) Insect nicotinic acetylcholine receptors. Landes Bioscience, St. Austin

Decourtye A, Lacassie E, Pham-Delegue MH (2003) Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59:269–278

Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delègue MH (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92

Decourtye A, Devillers J, Cluzeau S, Charreton M, Pham-Delègue MH (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419

Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delegue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48:242–250

Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264–277

DEFRA (2007) Assessment of the risk posed to honeybees by systemic pesticides. PS2322, CSL York, UK

DEFRA (2009) Intermittent exposure in terrestrial invertebrates—a case study with honeybees. PS2341, CSL York, UK

Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321:13–16

Delbeke E, Vercruysse P, Tirry L, de Clercq P, Degheele D (1997) Toxicity of diflubenzuron, pyriproxyfen, imidacloprid and diafenthiuron to the predatory bug Orius laevigatus (Het.: Anthocoridae). Entomophaga 42:349–358

Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, Moles A, Snart C, Ryder T, Ortori CA, Barrett DA, Schuster E, Stöger R (2013) Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 8:e68191

Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106

Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18

Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A 110:18466–18471. doi:10.1073/pnas.1314923110

Diez-Rodrijguez GI, de Baptista GC, Trevizani LR, Haddad ML, Nava DE (2006) Residues of thiamethoxam, aldicarb and its metabolites in coffee leaves and effect on the control of Leucoptera coffeella (Guerin-Meneville) (Lepidoptera: Lyonetiidae). Neotropical Entomol 35:257–263

Dilling C, Lambdin P, Grant J, Rhea R (2009) Community response of insects associated with eastern hemlock to imidacloprid and horticultural oil treatments. Environ Entomol 38:53–66

Dittbrenner N, Triebskorn R, Moser I, Capowiez Y (2010) Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa). Ecotoxicology 19:1567–1573

Dittbrenner N, Schmitt H, Capowiez Y, Triebskorn R (2011a) Sensitivity of Eisenia fetida in comparison to Aporrectodea caliginosa and Lumbricus terrestris after imidacloprid exposure. Body mass change and histopathology. J Soils Sediments 11:1000–1010

Dittbrenner N, Moser I, Triebskorn R, Capowiez Y (2011b) Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere 84:1349–1355

Dittbrenner N, Capowiez Y, Kohler H, Triebskorn R (2012) Stress protein response (Hsp70) and avoidance behaviour in Eisenia fetida, Aporrectodea caliginosa, and Lumbricus terrestris when exposed to imidacloprid. J Soils Sediments 12:198–206

Dively G, Hooks C (2010) Use patterns of neonicotinoid insecticides on cucurbit crops and their potential exposure to honey bees. Progress report, strategic agricultural initiative grants program, EPA region 3

Doffou NM, Ochou OG, Kouassi P (2011) Susceptibility of Pectinophora gossypiella (Lepidoptera: Gelechiidae) and Cryptophlebia leucotreta (Lepidoptera: Tortricidae) to insecticides used on cotton crops in Côte d’Ivoire, West Africa. Implications in insecticide resistance pest management strategies. Resistant Pest Manag Newsl 20:10–15

Dogramaci M, Tingey WM (2008) Comparison of insecticide resistance in a North American field population and a laboratory colony of potato tuberworm (Lepidoptera: Gelechiidae). J Pest Sci 81:17–22

Dondero F, Negri A, Boatti L, Marsano F, Mignone F, Viarengo A (2010) Transcriptomic and proteomic effects of a neonicotinoid insecticide mixture in the marine mussel (Mytilus galloprovincialis, Lam.). Sci Total Environ 15:3775–3786

Donnarumma L, Pulcini P, Pochi D, Rosati S, Lusco L, Conte E (2011) Preliminary study on persistence in soil and residues in maize of imidacloprid. J Environ Sci Health B 46:469–472

Dunley JE, Brunner JF, Doerr MD, Beers EH (2006) Resistance and cross-resistance in populations of the leafrollers, Choristoneura rosaceana and Pandemis pyrusana, in Washington apples. J Insect Sci 6

Dupuis JP, Gauthier M, Raymond-Delpech V (2011) Expression patterns of nicotinic subunits alpha 2, alpha 7, alpha 8, and beta 1 affect the kinetics and pharmacology of ACh-induced currents in adult bee olfactory neuropiles. J Neurophysiol 106:1604–1613

Durham EW, Scharf ME, Siegfried BD (2001) Toxicity and neurophysiological effects of fipronil and its oxidative sulfone metabolite on European corn borer larvae (Lepidoptera: Crambidae). Pestic Biochem Physiol 71:97–106

Durham EW, Siegfried BD, Scharf ME (2002) In vivo and in vitro metabolism of fipronil by larvae of the European corn borer Ostrinia nubilalis. Pest Manag Sci 58:799–804

Easton AH, Goulson D (2013) The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLoS One 8:e54819

Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London

EFSA (2006) Draft Assessment Report (DAR). Draft assessment report: initial risk assessment provided by the rapporteur member State Germany for the existing active substance imidacloprid

Eisenback BM, Salom SM, Kok LT, Lagalante AF (2010) Lethal and sublethal effects of imidacloprid on Hemlock woolly Adelgid (Hemiptera: Adelgidae) and two introduced predator species. J Econ Entomol 103:1222–1234

El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39

El Hassani AK, Dacher M, Gary V, Lambin M, Gauthier M, Armengaud C (2008) Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera). Arch Environ Contam Toxicol 54:653–661

El Hassani AK, Dupuis JP, Gauthier M, Armengaud C (2009) Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee. Invert Neurosci 9:91–100

Elbert A, Becker B, Hartwig J, Erdelen C (1991) Imidacloprid—a new systemic insecticide. Plant Prot Nachr Bayer 44:113–136

Epstein LH, Robinson JL, Roemmich JN, Marusewski A (2011) Slow rates of habituation predict greater zBMI gains over 12 months in lean children. Eat Behav 12:214–218

European Comission (2010) Commission Directive 2010/21/EU of 12 March 2010 amending Annex I to Council Directive 91/414/EEC as regards the specific provisions relating to clothianidin, thiamethoxam, fipronil and imidacloprid

Fagin D (2012) The learning curve. Nature 490:462–465. doi:10.1038/490462a

Fang Q, Huang CH, Ye GY, Yao HW, Cheng JA et al (2008) Differential fipronil susceptibility and metabolism in two rice stem borers from China. J Econ Entomol 101:1415–1420

Farooqui T (2013) A potential link among biogenic amines based pesticides, learning and memory, and colony collapse disorder: a unique hypothesis. Neurochem Int 62:122–136

Faucon JP, Aurieres C, Drajnudel P, Mathieu L, Ribiere M, Martel AC, Zeggane S, Chauzat MP, Aubert MFA (2005) Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci 61:111–125

Feber RE, Firbank LG, Johnson PJ, Macdonald DW (1997) The effects of organic farming on pest and non-pest butterfly abundance. Agric Ecosyst Environ 64:133–139

Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 37:301–308

Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B et al (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 9:e91364

Ford KA, Casida JE (2006) Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem Res Toxicol 19:1549–1556

Fossen M (2006) Environmental fate of imidacloprid. Environmental monitoring department of pesticide regulation, California, USA

Franklin MT, Winston ML, Morandin LA (2004) Effects of clothianidin on Bombus impatiens (Hymentoptera: Apidae) colony health and foraging behaviour. J Econ Entomol 97:369–373

Frantzios G, Paptsiki K, Sidiropoulou B, Lazaridis G, Theophilidis G, Mavragani-Tsipidou P (2008) Evaluation of insecticidal and genotoxic effects of imidacloprid and acetochlor in Drosophila melanogaster. J Appl Entomol 132:583–590

Freemark K, Boutin C (1995) Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agric Ecosyst Environ 52:67–91

Funayama K, Ohsumi S (2007) Control effect of neonicotinoid insecticides on apple leaf miner, Phyllonorycter ringoniella (Lepidoptera: Gracillariidae). Annu Rep Soc Plant Protect N Jpn 58:156–158

Galvanho JP, Carrera MP, Moreira DDO, Erthal M, Silva CP, Samuels RI (2013) Imidacloprid inhibits behavioral defences of the leaf-cutting ant Acromyrmex subterraneus subterraneus (Hymenoptera: Formicidae). J Insect Behav 26:1–13. doi:10.1007/S10905-012-9328-6

Gauthier M (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. In: Thany S (ed) Insect nicotinic acetylcholine receptors. Springer, Berlin

Gawleta N, Zimmermann Y, Eltz T (2005) Repellent foraging scent recognition across bee families. Apidologie 36:325–330

Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C, Eggers S, Bommarco R, Pärt T, Bretagnolle V, Plantegenest M, Clement LW, Dennis C, Palmer C, Oñate JJ, Guerrero I, Hawro V, Aavik T, Thies C, Flohre A, Hänke S, Fischer C, Goedhart PW, Inchausti P (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108

Girolami V, Mazzon L, Squartini A, Mori N, Marzaro M, Bernardo AD, Tapparo A (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. J Econ Entomol 102:1808–1815

Girolami V, Marzaro M, Vivan L, Mazzon L, Greatti M, Giorio C, Marton D, Tapparo A (2012) Fatal powdering of bees in flight with particulates of neonicotinoids seed coating and humidity implication. J Appl Entomol 136:17–26

Giurfa M (1993) The repellent scent-mark of the honeybee Apis mellifera ligustica and its role as communication cue during foraging. Insect Soc 40:59–67

Gomez-Eyles JL, Svendsen C, Lister L, Martin H, Hodson ME, Spurgeon DJ (2009) Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicol Environ Saf 72:71–79

Goulson D (2003) Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst 34:1–26

Goulson D (2010) Bumblebees: behaviour, ecology and conservation. Oxford University Press, Oxford

Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14:669–678

Gradish AE, Scott-Dupree CD, Shipp L, Harrisa CR, Ferguson G (2010) Effect of reduced risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Manag Sci 66:142–146

Graystock P, Yates K, Darvill B, Goulson D, Hughes WOH (2013a) Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J Invertebr Pathol 114:114–119

Graystock P, Yates K, Evison S, Darvill B, Goulson D, Hughes WOH (2013b) The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J Appl Ecol 50:1207–1215

Greatti M, Sabatini AG, Barbattini R, Rossi S, Stravisi A (2003) Risk of environmental contamination by the active ingredient imidacloprid used for corn seed dressing. Preliminary results. Bull Insect 56:69–72

Greenleaf S, Kremen C (2006) Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc Natl Acad Sci U S A 103:13890–13895

Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pestic Biochem Physiol 99:200–207

Gross M (2008) Pesticides linked to bee deaths. Curr Biol Vol 18:684

Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191

Guez D, Belzunces LP, Maleszka R (2003) Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 75:217–222

Gupta S, Gajbhiye VT (2007) Persistence of acetamiprid in soil. Bull Environ Contam Toxicol 78:349–352

Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19:1612–1619

Hatjina F, Papaefthimiou C, Charistos L, Dogaroglu T, Bouga M, Emmanouil C, Arnold G (2013) Sublethal doses of imidacloprid decreased size of hypopharyngeal glands and respiratory rhythm of honeybees in vivo. Apidologie 44:467–480

Hayasaka D, Korenaga T, Suzuki K, Saito F, Sánchez-Bayo F, Goka K (2012) Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80:355–62. doi:10.1016/j.ecoenv.2012.04.004

Haynes KF (1988) Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol 33:149–168

He YP, Gao CF, Cao MZ, Chen WM, Huang LQ et al (2007) Survey of susceptibilities to monosultap, triazophos, fipronil, and abamectin in Chilo suppressalis (Lepidoptera: Crambidae). J Econ Entomol 100:1854–1861

He YP, Gao CF, Chen WM, Huang LQ, Zhou WJ et al (2008) Comparison of dose responses and resistance ratios in four populations of the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), to 20 insecticides. Pest Manag Sci 64:308–315

He YP, Zhang JF, Gao CF, Su JY, Chen JM et al (2013) Regression analysis of dynamics of insecticide resistance in field populations of Chilo suppressalis (Lepidoptera: Crambidae) during 2002–2011 in China. J Econ Entomol 106:1832–1837

Henry M, Beguin M, Requier F, Rollin O, Odoux JF, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012a) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350

Henry M, Beguin M, Requier F, Rollin O, Odoux J, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012b) Response to comment on “A common pesticide decreases foraging success and survival in honey bees”. Science 337:1453

Hill TA, Foster RE (2000) Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). J Econ Entomol 93:763–768

Hoi KK, Daborn PJ, Battlay P, Robin C, Batterham P, O’Hair RA, Donald WA (2014) Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizes the insecticide imidacloprid in vivo. Anal Chem 86(7):3525–3532

Huang SJ, Xu JF, Han ZJ (2006) Baseline toxicity data of insecticides against the common cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. Int J Pest Manag 52:209–213

Illarionov AI (1991) Toxic effect of some insecticides on the honeybee. Agrokhimiva 8:121–125

Iwasa T, Motoyama N, Ambrose JT, Roe MR (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23:371–378

James DG, Price TS (2002) Fecundity in twospotted spider mite (Acari: Tetranychidae) is increased by direct and systemic exposure to imidacloprid. J Econ Entomol 95:729–732

Jeschke P, Nauen R, Schindler M, Elbert A (2010) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

Jinguji H, Thuyet DQ, Uéda T, Watanabe H (2013) Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Water Environ 11:277–284

Jones MM, Robertson JL, Weinzierl RA (2010) Susceptibility of Oriental fruit moth (Lepidoptera: Tortricidae) larvae to selected reduced-risk insecticides. J Econ Entomol 103:1815–1820

Jones MM, Robertson JL, Weinzierl RA (2012) Toxicity of thiamethoxam and mixtures of chlorantraniliprole plus acetamiprid, esfenvalerate, or thiamethoxam to neonates of oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 105:1426–1431

Kalajdzic P, Oehler S, Reczko M, Pavlidi N, Vontas J, Hatzigeorgiou AG, Savakis C (2012) Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms. PLoS One 7:e40296. doi:10.1371/journal.pone.0040296

Kalajdzic P1, Markaki M, Oehler S, Savakis C (2013) Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line. Food Chem Toxicol 60:355–359. doi:10.1016/j.fct.2013.07.080

Kather R, Drijfhout FP, Martin SJ (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212

Khani A, Ahmadi F, Ghadamyari M (2012) Side effects of imidacloprid and abamectin on the Mealybug destroyer, Cryptolaemus montrouzieri. Trakia J Sci 10:30–35

Kilpatrick AL, Hagerty AM, Turnipseed SG, Sullivan MJ, Bridges WC (2005) Activity of selected neonicotinoids and dicrotophos on nontarget arthropods in cotton: implications in insect management. J Econ Entomol 98:814–820

Kinkler H, Löser S, Rehnelt K (1987) 10 Jahre Erforschung des Moselapollofalters (Parnassius apollo vinningensis STICHEL 1899, Lepidoptera, Papilionidae) im modernen Weinbaugebiet der Mosel–ein Beitrag zu seiner Rettung. Commun Assoc rheinisch-westfälischer Lepidopterologen 5:74–96

Klein AM, Vaissie’re BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

Kluser S, Neumann P, Chauzat MP, Pettis JS (2011) UNEP emerging issues: global honey bee colony disorder and other threats to insect pollinators. http://www.unep.org. Accessed 25 October 2012

Knight AL (2010) Cross-resistance between azinphos-methyl and acetamiprid in populations of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), from Washington State. Pest Manag Sci 66:865–874

Knight ME, Martin AP, Bishop S, Osborne JL, Hale RJ, Sanderson RA, Goulson D (2005) An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol Ecol 14:1811–1820

Knoepp JD, Vose JM, Michael JL, Reynolds BC (2012) Imidacloprid movement in soils and impacts on soil microarthropods in Southern Appalachian eastern hemlock stands. J Environ Qual 41:469–478

Knollengberg WG, Merritt RW, Lawson DL (1985) Consumption of leaf litter by Lumbricus terrestris (Oligochaeta) on a Michigan woodland floodplain. Am Midl Nat J 113:1–6

Kramarz P, Stark JD (2003) Population level effects of cadmium and the insecticide, imidacloprid to the Parasitoid, Aphidius ervi after exposure through its host, the pea aphid, Acyrthosiphon pisum. Biol Control 27:310–314

Kreutzweiser DP, Sibley PK (2013) Aquatic communities: pesticide impacts. In: Jorgensen SE (ed) Encyclopedia of environmental management. Taylor and Francis, New York, pp 312–321

Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Thompson DG (2008a) Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms? J Environ Qual 37:639–646

Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Holmes SB, Thompson DG (2008b) Effects on litter-dwelling earthworms and microbial decomposition of soil-applied imidacloprid for control of wood-boring insects. Pest Manag Sci 64:112–118

Kreutzweiser DP, Thompson DG, Scarr TA (2009) Imidacloprid in leaves from systemically treated trees may inhibit litter breakdown by non-target invertebrates. Ecotoxicol Environ Saf 72:1053–1057

Krischik VA, Landmark AL, Heimpel GE (2007) Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environ Entomol 36:1238–1245

Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228

Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS One 7:e29268

Kullik SA, Sears MK et al (2011) Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development. J Econ Entomol 104:484–93

Kunkel BA, Held DW, Potter AD (1999) Impact of halofenozide, imidacloprid, and bendiocarb on beneficial invertebrates and predatory activity in turfgrass. J Econ Entomol 92:922–930

Kunkel BA, Held DW, Potter DA (2001) Lethal and sub-lethal effects of bendiocarb, halofenozide, and imidacloprid on Harpalus pennysylvanicus (Coleoptera: Carabidae) following different modes of exposure in turfgrass. J Econ Entomol 94:60–67

Kurwadkar ST, Dewinne D, Wheat R, McGahan DG, Mitchell FL (2013) Time dependent sorption behaviour of dinotefuran, imidacloprid and thiamethoxam. J Environ Sci Health B 48:237–242

Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134

Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

Larson JL, Redmond CT, Potter DA (2012) Comparative impact of an anthranilic diamide and other insecticidal chemistries on beneficial invertebrates and ecosystem services in turfgrass. Pest Manag Sci 68:740–748

Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012a) Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1937–1945

Laycock I, Lenthall KM, Barratt AT, Cresswell JE (2012b) Erratum to: Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21:1946–1946

LeBlanc HMK, Culp JM, Baird DJ, Alexander AC, Cessna AJ (2012) Single versus combined lethal effects of three agricultural insecticides on larvae of the freshwater insect Chironomus dilutes. Arch Environ Contam Toxicol 63:378–390

Lee KW (1985) Earthworms: their ecology and relationship with soils and land use. Academic, Sydney

Lee JC, Menalled FD, Landis DA (2001) Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol 38:472–483

Li AG, Yang YH, Wu SW, Li C, Wu YD (2006) Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 99:914–919

Li XT, Huang QC, Yuan JZ, Tang ZH (2007) Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pestic Biochem Physiol 89:169–174

Liang GM, Chen W, Liu TXTX (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Prot 22:333–340

Liess M, Beketov M (2011) Traits and stress—keys to identify community effects at low toxicant level. Ecotoxicology 20:1328–1340

Liess M, Beketov MA (2012) Rebuttal related to “Traits and stress—keys to identify community effects of low levels of toxicants in test systems”. Ecotoxicology 21:300–303

Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965

Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406:484–90

Liess M, Foit K, Becker A, Hassold E, Dolciotti I, Kattwinkel M, Duquesne S (2013) Culmination of low-dose pesticide effects. Environ Sci Tech 47:8862–8868

Lintott DR (1992) NTN 33893 (240 FS formulation): acute toxicity to the mysid, Mysidopsis bahia, under flow-through conditions. Toxicon Environmental Sciences, Jupiter, Florida (performing laboratory). Miles Incorporated, Kansas City, Missouri (submitting company). 43 pp. Miles Report No. 103845

Little EE (1990) Behavioural toxicology; stimulating challenges for a growing discipline. Environ Toxicol Chem 9:1–2

Longley M, Sotherton NW (1997) Factors determining the effects of pesticides upon butterflies inhabiting arable farmland. Agric Ecosyst Environ 61:1–12

Lucas E, Giroux S, Demougeot S, Duchesne RM, Coderre D (2004) Compatibility of a natural enemy, Coleomegilla maculata lengi (Col., Coccinellidae) and four insecticides used against the Colorado potato beetle (Col., Chrysomelidae). J Appl Entomol 128:233–239

Lukancic S, Zibrat U, Mezek T, Jerebic A, Simcic T, Brancelj A (2010) Effects of exposing two non-target crustacean species, Asellus aquaticus L., and Gammarus fossarum Koch., to atrazine and imidacloprid. Bull Environ Contam Toxicol 84(1):85–90. doi:10.1007/s00128-009-9854-x

Luo Y, Zang Y, Zhong Y, Kong Z (1999) Toxicological study of two novel pesticides on earthworm Eisenia fetida. Chemosphere 39:2347–2356

Lydy M, Belden J, Wheelock C, Hammock B, Denton D (2004) Challenges in regulating pesticide mixtures. Ecol Soc 9:1

Magalhaes LC, Walgenbach JF (2011) Life stage toxicity and residual activity of insecticides to codling moth and Oriental fruit moth (Lepidoptera: Tortricidae). J Econ Entomol 104:1950–1959

Maisonnasse A, Lenoir JC, Beslay D, Crauser D, Le Conte Y (2010) E-b-Ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS One 5

Mani S, Medrzycki P, Porrini C (2010) The puzzle of honey bee losses: a brief review. Bull Insect 63:153–160

Mann RS, Uppal SK, Sharma S, Mann KK (2009) Soil efficacy of fipronil to early stage pests of sugarcane, and its effect on development on Chilo infuscatellus Snellen (Crambidae: Lepidoptera). Int J Pest Manag 55:307–315

Marzaro M, Vivan L, Targa A, Mazzon L, Mori N, Greatti M, Petrucco Toffolo E, Di Bernardo A, Giorio C, Marton D, Tapparo A, Girolami V (2011) Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull Insect 64:118–125

Mason R, Tennekes HA, Sanchez-Bayo F, Jepsen PU (2013) Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol 1:3–12

Maus C, Nauen R (2010) Response to the publication: Tennekes H.A. The significance of the Druckey-Kϋpfmϋller equation for risk assessment—the toxicity of neonicotinoid insecticides is reinforced by exposure time. Toxicology 280:176–177. doi:10.1016/j.tox.2010.11.014

Maxim L, van der Sluijs JP (2007) Uncertainty: cause or effect of stakeholders’ debates? Analysis of a case study: the risk for honeybees of the insecticide Gaucho®. Sci Total Environ 376:1–17

Maxim L, van der Sluijs JP (2013) Seed–dressing systemic insecticides and honeybees, chapter 16. In: European Environment Agency (ed.) Late lessons from early warnings: science, precaution, innovation. European Environment Agency (EEA) report 1/2013, Copenhagen. p. 401–438

Mayer DF, Lunden JD (1997) Effects of imidacloprid insecticide on three bee pollinators. Hortic Sci 29:93–97

McKern JA, Johnson DT, Lewis BA (2007) Biology and control of the raspberry crown borer (Lepidoptera: Sesiidae). J Econ Entomol 100:398–404

Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C (2003) Effects of imidacloprid administered in sublethal doses on honey bee behaviour. Laboratory tests. Bull Insect 56:59–62

Medrzycki P, Sgolastra F, Bogo G, Tosi S, Venturi S (2011) Influence of some experimental conditions on the results of laboratory toxicological tests on honeybees. XI International Symposium “Hazards of pesticides to bees” Wageningen, The Netherlands, November 2–4

Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215

Morandin LA, Winston ML (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ Entomol 32:555–563

Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51:487–492

Mostert MA, Schoeman AS, van der Merwe M (2000) The toxicity of five insecticides to earthworms of the Pheretima group, using an artificial soil test. Pest Manag Sci 56:1093–1097

Mostert MA, Schoeman AS, van der Merwe M (2002) The relative toxicities of insecticides to earthworms of the Pheretima group (Oligochaeta). Pest Manag Sci 58:446–450

Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM (2008) Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Manag Sci 64:881–890

Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754

Nauen R, Ebbinghaus-Kintscher U, Schmuck R (2001) Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci 57:577–586

Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Physiol 76:55–69

Neumann P, Carreck NL (2010) Honey bee colony loss. J Apic Res 49:1–6, special issue

Nguyen BK et al (2009) Does imidacloprid seed-treated maize have an impact on honey bee mortality? J Econ Entomol 102:616–623

Nielsen SA, Brodsgaard CJ, Hansen H (2000) Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Altern Lab Anim 28:437–443

Ninsin KD (2004a) Acetamiprid resistance and cross-resistance in the diamondback moth, Plutella xylostella. Pest Manag Sci 60:839–841

Ninsin KD (2004b) Selection for resistance to acetamiprid and various other insecticides in the diamondback moth, Plutella xylostella (L.) (Lep., Plutellidae). J Appl Entomol 128:445–451

Ninsin KD, Miyata T (2003) Monitoring acetamiprid resistance in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Appl Entomol Zool 38:517–521

Ninsin KD, Tanaka T (2005) Synergism and stability of acetamiprid resistance in a laboratory colony of Plutelia xylostella. Pest Manag Sci 61:723–727

Ninsin KD, Mo JC, Miyata T (2000) Decreased susceptibilities of four field populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), to acetamiprid. Appl Entomol Zool 35:591–595

Nyman AM, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater Amphipod Gammarus pulex by interfering with feeding behavior. PLoS One 8:e62472

Oldroyd PB (2007) What’s killing American honey bees? PLoS Biol 5:e168

Oliveira RA, Roat TC, Carvalho SM, Malaspina O (2013) Side-effects of thiamethoxam on the brain and midgut of the Africanized honeybee Apis mellifera (Hymenoptera: Apidae). Environ Toxicol 28 doi: 10.1002/tox.21842

Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45:784–792

Osterberg JS, Darnell KM, Blickley TM, Romano JA, Rittschof D (2012) Acute toxicity and sub-lethal effects of common pesticides in post-larval and juvenile blue crabs, Callinectes sapidus. J Exp Mar Biol Ecol 424–425:5–14

Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81

Paradis D, Bérail G, Bonmatin JM, Belzunces LP (2013) Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem 406:621–633

Peck DC (2009) Comparative impacts of white grub (Coleoptera: Scarabaeidae) control products on the abundance of non-target soil-active arthropods in turfgrass. Pedobiologia 52:287–299

Peck DC, Olmstead D (2010) Neonicotinoid insecticides disrupt predation on the eggs of turf-infesting scarab beetles. Bull Entomol Res 100:689–700

Pedibhotla VK, Hall FR, Holmsen J (1999) Deposit characteristics and toxicity of fipronil formulations for tobacco budworm (Lepidoptera: Noctuidae) control on cotton. Crop Prot 18:493–499

Pestana JLT, Alexander AC, Culp JM, Baird DJ, Cessna AJ, Soares A (2009) Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environ Pollut 157:2328–2334

Pettis JS, van Engelsdorp D, Johnson J, Dively G (2012) Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften 99:153–158

Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I (2013) A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One 8:e77193

Pochi D, Biocca M, Fanigliulo R, Pulcini P, Conte E (2012) Potential exposure of bees, Apis mellifera L., to particulate matter and pesticides derived from seed dressing during maize sowing. Bull Environ Contam Toxicol 89:354–61

Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. J Econ Entomol 100:1053–1061

Prabhaker N, Castle SJ, Naranjo SE, Toscano NC, Morse JG (2011) Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. J Econ Entomol 104:773–781

Rahmani S, Bandani AR, Sabahi Q (2013) Effects of thiamethoxam in sublethal concentrations, on life expectancy (ex) and some other biological characteristics of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Int Res J App Basic Sci 4:556–560

Ramasubramanian T (2013) Persistence and dissipation kinetics of clothianidin in the soil of tropical sugarcane ecosystem. Water Air Soil Pollut 224:1468

Ramirez-Romero R, Chaufaux J, Pham-Delegue MH (2005) Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36:601–611

Rasmussen JJ, McKnight US, Loinaz MC, Thomsen NI, Olsson ME, Bjerg PL, Binning PJ, Kronvang B (2013) A catchment scale evaluation of multiple stressor effects in headwater streams. Sci Total Environ 442:420–31

Reinhard J, Srinivasan MV, Zhang SW (2004) Scent-triggered navigation in honeybees. Nature 427:411–411

Reyes M, Franck P, Charmillot PJ, Ioriatti C, Olivares J et al (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the Codling moth, Cydia pomonella. Pest Manag Sci 63:890–902

Rhainds M, Sadof C (2009) Control of bagworms (Lepidoptera: Psychidae) using contact and soil-applied systemic insecticides. J Econ Entomol 102:1164–1169

Riaz MA, Chandor-Proust A, Dauphin-Villemant C, Poupardin R, Jones CM, Strode C, Régent-Kloeckner M, David JP, Reynaud S (2013) Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquat Toxicol 126:326–337. doi:10.1016/j.aquatox.2012.09.010

Richarz N, Neumann D, Wipking W (1989) Untersuchungen zur Ökologie des Apollofalters (Parnassius apollo vinningensis Stichel 1899, Lepidoptera, Papilionidae) im Weinbaugebiet der unteren Mosel. Mitt der Assoc Rheinisch-Westfälischer Lepidopterologen 5:108–259

Rodrick GB (2008) Effect of temperature, salinity, and pesticides on oyster hemocyte activity. Florida Water Resour J 86:4–14. doi:10.2175/SJWP(2008)1

Rogers MA, Krischik VA, Martin LA (2007) Effect of soil application of imidacloprid on survival of adult green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), used for biological control in greenhouse. Biol Control 42:172–177

Rondeau G, Sanchez-Bayo F, Tennekes HA, Decourtye A, Ramirez-Romero R, Desneux N (2014) Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Nat Sc Rep 4:5566. doi:10.1038/srep05566

Rundlöf M, Bengtsson J, Smith HG (2008) Local and landscape effects of organic farming on butterfly species richness and abundance. J Appl Ecol 45:813–820

Rust MK, Reierson DA, Klotz JH (2004) Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling Argentine ants (Hymenoptera: Formicidae). J Econ Entomol 97:1017–1024

Sánchez-Bayo F (2006) Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ Pollut 139:385–420

Sánchez-Bayo F (2009) From simple toxicological models to prediction of toxic effects in time. Ecotoxicology 18:343–354

Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482

Sanchez-Bayo F, Kouchi G (2012) Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 21:667–680. doi:10.1007/s10646-011-0823-x

Saour G (2008) Effect of thiacloprid against the potato tuber moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). J Pest Sci 81:3–8

Sardo AM, Soares AMVM (2010) Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic Oligochaete Lumbriculus variegatus. Arch Environ Contam Toxicol 58:648–656

Sarkar MA, Roy S, Kole RK, Chowdhury A (2001) Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci 57:598–602

Sayyed AH, Crickmore N (2007) Selection of a field population of diamondback moth (Lepidoptera: Plutellidae) with acetamiprid maintains, but does not increase, cross-resistance to pyrethroids. J Econ Entomol 100:932–938

Sayyed AH, Wright DJ (2004) Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J Econ Entomol 97:2043–2050

Schäfer RB, vd Ohe P, Rasmussen J, Kefford B, Beketov M, Schulz R, Liess M (2012) Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environ Sci Tech 46:5134–5142

Schmidt A (1997) Zur aktuellen situation des mosel-apollofalters parnassius apollo vinningensis Stichel, 1899 (Lep., Papilionidae). Melanargia 9:38–47

Schmuck R (2004) Effects of a chronic dietary exposure of the honeybee Apis mellifera (Hymenoptera: Apidae) to imidacloprid. Arch Environ Contam Toxicol 47:471–478

Schmuck R, Schoning R, Stork A, Schramel O (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag Sci 57:225–238

Schmuck R, Stadler T, Schmidt HW (2003) Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag Sci 59:279–286

Schneider CW, Tautz J, Grünewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7:e30023

Scholer J, Krischik V (2014) Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One 9:e91573

Scott-Dupree CD, Conroy L, Harris CR (2009) Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J Econ Entomol 102:177–182

Seagraves MP, Lundgren JG (2012) Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132

Sergio M (2013) GMO and pesticide experiments in Hawaii: the poisoning of paradise. Huffington Post. http://www.huffingtonpost.com/maggie-sergio/gmo-pesticide-experiments_b_3513496.html

Setamou M, Rodriguez D, Saldana R, Schwarzlose G, Palrang D et al (2010) Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. J Econ Entomol 103:1711–1719

Sgolastra F, Renzi T, Draghetti S, Medrzycki P, Lodesani M, Maini S, Pottini C (2012) Effects of neonicotinoid dust from maize seed-dressing on honey bees. Bullf Insect 65:273–280

Sheehan C, Kirwan L, Connolly J, Bolger T (2008) The effects of earthworm functional diversity on microbial biomass and the microbial community level physiological profile of soils. Eur J Soil Biol 44:65–70

Shi ZH, Guo SJ, Lin WC, Liu SS (2004) Evaluation of selective toxicity of five pesticides against Plutella xylostella (Lep: Plutellidae) and their side-effects against Cotesia plutellae (Hym: Braconidae) and Oomyzus sokolowskii (Hym: Eulophidae). Pest Manag Sci 60:1213–1219

Siegfried BD, Spencer T, Marcon PCRG (1999) Susceptibility of European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae) neonate larvae to fipronil. J Agric Urban Entomol 16:273–278

Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin J-M, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2014) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res (this issue)

Sinha SN, Lakhani KH, Davis BNK (1990) Studies on the toxicity of insecticidal drift to the first instar larvae of the large white butterfly Pieris brassicae (Lepidoptera: Pieridae). Ann Appl Biol 116:27–41

Smith SF, Krischick VA (1999) Effects of systemic imidacloprid on Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 28:1189–1195

Smith JF, Catchot AL, Musser FR, Gore J (2013) Effects of aldicarb and neonicotinoid seed treatments on twospotted spider mite on cotton. J Econ Entomol 106:807–815

Smodis Skerl MI, Velikonja Bolta S, Basa Cesnik H, Gregorc A (2009) Residues of pesticides in honeybee (Apis mellifera carnica) bee bread and in pollen loads from treated apple orchards. Bull Environ Contam Toxicol 83:374–7

Song MY, Brown JJ (1998) Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotoxicol Environ Saf 41:195–202

Song MY, Stark JD, Brown JJ (1997) Comparative toxicity of four insecticides, including imidacloprid and tebufenozide, to four aquatic arthropods. Environ Toxicol Chem 16:2494–2500

Stapel JO, Cortesero AM, Lewis WJ (2000) Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol Control 17:243–249

Stara J, Kocourek F (2007) Insecticidal resistance and cross-resistance in populations of Cydia pomonella (Lepidoptera: Tortricidae) in central Europe. J Econ Entomol 100:1587–95

Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519

Stark JD, Jepson PC, Mayer DF (1995) Limitations to use of topical toxicity data for predictions of pesticide side effects in the field. J Econ Entomol 88:1081–1088

Starner K, Goh KS (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol, 1–6

Stokstad E (2007) The case of the empty hives. Science 316:970–972

Stoughton SJ, Liber K, Culp J, Cessna A (2008) Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54:662–673

Stygar D, Michalczyk K, Dolezych B, Nakonieczny M, Migula P et al (2013) Digestive enzymes activity in subsequent generations of Cameraria ohridella larvae harvested from horse chestnut trees after treatment with imidacloprid. Pestic Biochem Physiol 105:5–12

Suchail S, Guez D, Belzunces LP (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ Toxicol Chem 19:1901–1905

Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20:2482–2486

Suchail S, De Sousa G, Rahmani R, Belzunces LP (2004a) In vivo distribution and metabolisation of [14C]-imidacloprid in different compartments of Apis mellifera L. Pest Manag Sci 60:1056–1062

Suchail S, Debrauwer L, Belzunces LP (2004b) Metabolism of imidacloprid in Apis mellifera. Pest Manag Sci 60:291–296

Symington CA (2003) Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Crop Prot 22:513–519

Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ (2011) Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PLoS One 6:e20018

Szczepaniec A, Raupp MJ, Parker RD, Kerns D, Eubanks MD (2013) Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLoS One 8:e62620

Tapparo A, Marton D, Giorio C, Zanella A, Solda’ L, Marzaro M, Vivan L, Girolami V (2012) Assessment of the environmental exposure of honeybees to the particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ Sci Tech 46:2592–2599

Tarmann G (2009) Die Vinschger Trockenrasen - Ein Zustandsbericht auf basis der bioindikatoren Tagfalter und widderchen (Lepidoptera: Rhopalocera, Zygaenidae). Sci Yearb Tyrolean State Mus 2:307–350

Tasei JN, Lerin J, Ripault G (2000) Sub-lethal effects of imidacloprid on bumblebees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Manag Sci 56:784–788

Tasei JN, Ripault G, Rivault E (2001) Hazards of imidacloprid seed coating to Bombus terrestris (Hymenoptera: Apidae) when applied to sunflower. J Econ Entomol 94:623–627

Taverner PD, Sutton C, Cunningham NM, Dyson C, Lucas N et al (2011) Efficacy of several insecticides alone and with horticultural mineral oils on light brown apple moth (Lepidoptera: Tortricidae) eggs. J Econ Entomol 104:220–224

Taverner PD, Sutton C, Cunningham NM, Myers SW (2012) The potential of mineral oils alone and with reduced rates of insecticides for the control of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), on nursery plants. Crop Prot 42:83–87

Teeters BS, Johnson RM, Ellis MD, Siegfried BD (2012) Using video-tracking to assess sublethal effects of pesticides on honey bees (Apis mellifera L.). Environ Toxicol Chem 31:1349–1354

Tennekes HA (2010) The significance of the Druckrey-Küpfmüller equation for risk assessment—the toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time. Toxicology 276:1–4

Tennekes HA (2011) The significance of the Druckrey-Küpfmüller equation for risk assessment—the toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time: responding to a letter to the editor by Drs. C. Maus and R. Nauen of Bayer CropScience AG. Toxicology 280:173–175

Tennekes HA, Sánchez-Bayo F (2012) Time-dependent toxicity of neonicotinoids and other toxicants: implications for a new approach to risk assessment. J Environ Anal Toxicol S4:001. doi:10.4172/2161-0525.S4-001

Tennekes HA, Sánchez-Bayo F (2013) The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 309:39–51

Thany SH, Gauthier M (2005) Nicotine injected into the antennal lobes induces a rapid modulation of sucrose threshold and improves short-term memory in the honeybee Apis mellifera. Brain Res 1039:216–219

Thany SH, Lenaers G, Crozatier M, Armengaud C, Gauthier M (2003) Identification and localization of the nicotinic acetylcholine receptor alpha3 mRNA in the brain of the honeybee, Apis mellifera. Insect Mol Biol 12:255–262

Thompson HM, Maus C (2007) The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag Sci 63:1058–1061

Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7:e38406

Tomizawa M, Maltby D, Talley TT, Durkin KA, Medzihradszky KF, Burlingame AL, Taylor P, Casida JE (2008) Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proc Natl Acad Sci U S A 105:1728–1732

Tu C, Wang Y, Duan W, Hertl P, Tradway L, Brandenburg R, Lee D, Snell M, Hu S (2011) Effects of fungicides and insecticides on feeding behavior and community dynamics of earthworms: implications for casting control in turfgrass systems. Appl Soil Ecol 47:31–36

Valdovinos-Núñez J, Quezada-Euán JG, Ancona-Xiu P, Moo-Valle H, Carmona A, Sanchez ER (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102:1737–1742

Van den Brink PJ, Roelsma J, van Nes EH, Scheffer M, Brock TCM (2002) PERPEST model: a case-based reasoning approach to predict ecological risks of pesticides. Environ Toxicol Chem 21:2500–2506

Van der Sluijs JP, Simon-Delso S, Goulson D, Maxim L, Bonmatin JM, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5:293–305

Van der Zee R, Pisa L, Andonov S, Brodschneider R, Charriere JD et al (2012) Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. J Apic Res 51:91–114. doi:10.3896/ibra.1.51.1.12

Van Dijk TC, van Staalduinen MA, van der Sluijs JP (2013) Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 8:e62374. doi:10.1371/journal.pone.0062374

Van Engelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:80–95

Vandame R, Meled M, Colin ME, Belzunces LP (1995) Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environ Toxicol Chem 14:855–860

Vidau C, Diogon M, Aufauvre J, Fontbonne R, Vigues B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. doi:10.1371/journal.pone.0021550

Vijver MG, van den Brink PJ (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLoS One 9:e89837

Villanueva-Jimenez JA, Hoy MA (1998) Toxicity of pesticides to the citrus leafminer and its parasitoid Ageniaspis citricola evaluated to assess their suitability for an IPM program in citrus nurseries. Biocontrol 43:357–388

Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007) Miniature excitatory synaptic ion currents in the earthworm Lumbricus terrestris body wall muscles. Physiol Res 56:655–658

Voudouris CC, Sauphanor B, Franck P, Reyes M, Mamuris Z et al (2011) Insecticide resistance status of the codling moth Cydia pomonella (Lepidoptera: Tortricidae) from Greece. Pestic Biochem Physiol 100:229–238

Wang M, Grimm V (2010) Population models in pesticide risk assessment: lessons from assessing population-level effects, recovery, and alternative exposure scenarios from modeling a small mammal. Environ Toxicol Chem 29:1292–1300

Wang AH, Wu JC, Yu YS, Liu JL, Yue JF et al (2005) Selective insecticide-induced stimulation on fecundity and biochemical changes in Tryporyza incertulas (Lepidoptera: Pyralidae). J Econ Entomol 98:1144–1149

Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012a) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128

Wang Y, Wu S, Chen L, Wu C, Yu R, Wang Q, Zhao X (2012b) Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 88:484–491

Ward GS (1990) NTN 33893 technical: acute toxicity to the mysid, Mysidopsis bahia, under flow-through test conditions. Toxicon Environmental Sciences, Jupiter, Florida (performing laboratory). Mobay Corporation, Kansas City, Missouri (submitting laboratory). Mobay Report No. 100355. 46 pp

Ward GS 1991. NTN 33893 technical: chronic toxicity to the mysid Mysidopsis bahia under flow-through conditions. Toxicon Environmental Sciences, Jupiter, FL. 87 pp. Miles Report No. 101347

Weibull AC, Bengtsson J, Nohlgren E (2000) Diversity of butterflies in the agricultural landscape: the role of farming system and landscape heterogeneity. Ecography 23:743–750

Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–352

Wise JC, Jenkins PE, Vander Poppen R, Isaacs R (2010) Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in highbush blueberry. J Econ Entomol 103:1720–1728

Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720

Wu JY, Smart MD, Anelli CM, Sheppard WS (2012) Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. J Invertebr Pathol 109:326–329

Yamada T, Yamada K, Wada N (2012) Influence of dinotefuran and clothianidin on a bee colony. Japan J Clin Ecol 21:10–23

Yang EC, Chuang YC, Chen YL, Chang LH (2008) Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J Econ Entomol 101:1743–1748

Yang EC, Chang HC, Wu WY, Chen YW (2012) Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7:e49472

Youn YN, Seo MJ, Shin JG, Jang C, Yu YM (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biol Control 28:164–170

Yu YS, Xue S, Wu JC, Wang F, Liu JL et al (2007a) Distribution of imidacloprid residues in different parts of rice plants and its effect on larvae and adult females of Chilo suppressalis (Lepidoptera: Pyralidae). J Econ Entomol 100:375–380

Yu YS, Xue S, Wu JC, Wang F, Yang GQ (2007b) Changes in levels of juvenile hormone and molting hormone in larvae and adult females of Chilo suppressalis (Lepidoptera: Pyralidae) after imidacloprid applications to rice. J Econ Entomol 100:1188–1193

Yue B, Wilde GE, Arthur F (2003) Evaluation of thiamethoxam and imidacloprid as seed treatments to control European corn borer and Indianmeal moth (Lepidoptera: Pyralidae) larvae. J Econ Entomol 96:503–509

Zang Y, Zhong Y, Luo Y, Kong ZM (2000) Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ Pollut 108:271–278

Zeng CX, Wang JJ (2010) Influence of exposure to imidacloprid on survivorship, reproduction and vitellin content of the carmine spider mite, Tetranychus cinnabarinus. J Insect Sci 10:20

Zhou LJ, Huang JG, Xu HH (2011) Monitoring resistance of field populations of diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) to five insecticides in South China: a ten-year case study. Crop Prot 30:272–278