Effects of nanowire height on pool boiling performance of water on silicon chips

International Journal of Thermal Sciences - Tập 50 Số 11 - Trang 2084-2090 - 2011
Zhonghua Yao1, Yen‐Wen Lu2, Satish G. Kandlikar3
1Rochester Institute of Technology Rochester NY USA
2National Taiwan University, Taipei, Taiwan
3Mechanical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wei, 2003, Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72, Int. J. Heat Mass Transfer, 46, 4059, 10.1016/S0017-9310(03)00226-6

Liter, 2001, Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment, Int. J. Heat Mass Transfer, 44, 4287, 10.1016/S0017-9310(01)00084-9

Li, 2007, Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces, J. Heat Transfer, 129, 1465, 10.1115/1.2759969

Takata, 2003, Pool boiling on a superhydrophilic surface, Int. J. Energy Res., 27, 111, 10.1002/er.861

Davis, 2002, Ordered porous materials for. Emerging applications, Nature, 417, 813, 10.1038/nature00785

Vemuri, 2005, Pool boiling of saturated FC-72 on nano-porous surface, Int. Commun. Heat Mass Transfer, 32, 27, 10.1016/j.icheatmasstransfer.2004.03.020

Wu, 2010, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, Int. J. Heat Mass Transfer, 53, 1773, 10.1016/j.ijheatmasstransfer.2010.01.013

Chen, 2009, Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays, Sci. China Ser. E-Tech Sci., 52, 1596, 10.1007/s11431-009-0195-0

Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030

Launay, 2006, Hybrid micro-nanostructured thermal interfaces for pool boiling heat transfer enhancement, Microelectronics J., 37, 1158, 10.1016/j.mejo.2005.07.016

Ahn, 2006, Pool boiling experiments on Multi Walled Carbon Nanotube (MWCNT) Forests, J. Heat Transfer-Transactions ASME, 128, 1335, 10.1115/1.2349511

Li, 2007, Nanostructured copper interfaces for enhanced boiling, Smll

Kim, 2010, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Exp. Therm. Fluid Sci., 34, 487, 10.1016/j.expthermflusci.2009.05.006

Chen, 2009, Nanowires for enhanced boiling heat transfer, Nano Lett., 9, 548, 10.1021/nl8026857

Im, 2010, Enhanced boiling of a dielectric liquid on copper nanowire surfaces, Int. J. Micro-Nano Scale Transport, 1, 79, 10.1260/1759-3093.1.1.79

Betz, 2010, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?, App. Phys. Lett., 97, 10.1063/1.3485057

Lu, 2011, Nanoscale surface modification techniques for pool boiling enhancement–A critical review and future directions, Heat Transfer Eng., 32, 10.1080/01457632.2011.548267

Yao, 2011, “Direct growth of copper nanowires on a substrate for boiling applications”, Micro & Nano Lett., 6, 562, 10.1049/mnl.2011.0136

Tyrrell, 2001, Images of nanobubbles on hydrophobic surfaces and their interactions, Phys. Rev.Lett., 87, 176104, 10.1103/PhysRevLett.87.176104

Holmberg, 2003, Nanobubble trouble on gold surface, Langmuir, 19, 10510, 10.1021/la0352669

Peng, 2006, Metal particle induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution, Chem. Eur. J, 12, 7942, 10.1002/chem.200600032

Li, 2000, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett., 77, 2572, 10.1063/1.1319191

Cheng, 2008, A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates, J. Electrochem. Soc., 155, D711, 10.1149/1.2977548

Cooke, 2011, Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels, J. Heat Transfer, 133, 10.1115/1.4003046

Theofanous, 2002, The boiling crisis phenomenon, Exp. Therm. Fluid Sci., 26, 775, 10.1016/S0894-1777(02)00192-9

Hsu, 1962, On the size range of active nucleation cavities on a heating surface, J. Heat Transfer, 207, 10.1115/1.3684339

1999