Effects of nanowire height on pool boiling performance of water on silicon chips
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wei, 2003, Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72, Int. J. Heat Mass Transfer, 46, 4059, 10.1016/S0017-9310(03)00226-6
Liter, 2001, Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment, Int. J. Heat Mass Transfer, 44, 4287, 10.1016/S0017-9310(01)00084-9
Li, 2007, Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces, J. Heat Transfer, 129, 1465, 10.1115/1.2759969
Takata, 2003, Pool boiling on a superhydrophilic surface, Int. J. Energy Res., 27, 111, 10.1002/er.861
Davis, 2002, Ordered porous materials for. Emerging applications, Nature, 417, 813, 10.1038/nature00785
Vemuri, 2005, Pool boiling of saturated FC-72 on nano-porous surface, Int. Commun. Heat Mass Transfer, 32, 27, 10.1016/j.icheatmasstransfer.2004.03.020
Wu, 2010, Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces, Int. J. Heat Mass Transfer, 53, 1773, 10.1016/j.ijheatmasstransfer.2010.01.013
Chen, 2009, Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays, Sci. China Ser. E-Tech Sci., 52, 1596, 10.1007/s11431-009-0195-0
Ujereh, 2007, Effects of carbon nanotube arrays on nucleate pool boiling, Int. J. Heat Mass Transfer, 50, 4023, 10.1016/j.ijheatmasstransfer.2007.01.030
Launay, 2006, Hybrid micro-nanostructured thermal interfaces for pool boiling heat transfer enhancement, Microelectronics J., 37, 1158, 10.1016/j.mejo.2005.07.016
Ahn, 2006, Pool boiling experiments on Multi Walled Carbon Nanotube (MWCNT) Forests, J. Heat Transfer-Transactions ASME, 128, 1335, 10.1115/1.2349511
Li, 2007, Nanostructured copper interfaces for enhanced boiling, Smll
Kim, 2010, Effects of nano-fluid and surfaces with nano structure on the increase of CHF, Exp. Therm. Fluid Sci., 34, 487, 10.1016/j.expthermflusci.2009.05.006
Im, 2010, Enhanced boiling of a dielectric liquid on copper nanowire surfaces, Int. J. Micro-Nano Scale Transport, 1, 79, 10.1260/1759-3093.1.1.79
Betz, 2010, Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?, App. Phys. Lett., 97, 10.1063/1.3485057
Lu, 2011, Nanoscale surface modification techniques for pool boiling enhancement–A critical review and future directions, Heat Transfer Eng., 32, 10.1080/01457632.2011.548267
Yao, 2011, “Direct growth of copper nanowires on a substrate for boiling applications”, Micro & Nano Lett., 6, 562, 10.1049/mnl.2011.0136
Tyrrell, 2001, Images of nanobubbles on hydrophobic surfaces and their interactions, Phys. Rev.Lett., 87, 176104, 10.1103/PhysRevLett.87.176104
Peng, 2006, Metal particle induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution, Chem. Eur. J, 12, 7942, 10.1002/chem.200600032
Li, 2000, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Appl. Phys. Lett., 77, 2572, 10.1063/1.1319191
Cheng, 2008, A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates, J. Electrochem. Soc., 155, D711, 10.1149/1.2977548
Cooke, 2011, Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels, J. Heat Transfer, 133, 10.1115/1.4003046
Theofanous, 2002, The boiling crisis phenomenon, Exp. Therm. Fluid Sci., 26, 775, 10.1016/S0894-1777(02)00192-9
Hsu, 1962, On the size range of active nucleation cavities on a heating surface, J. Heat Transfer, 207, 10.1115/1.3684339
1999