Effects of image data quality on a convolutional neural network trained in-tank fish detection model for recirculating aquaculture systems
Tài liệu tham khảo
Ahmed, 2021, Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation, J. Clean. Prod., 297, 10.1016/j.jclepro.2021.126604
Almansa, 2015, The laser scanner is a reliable method to estimate the biomass of a Senegalese sole (Solea senegalensis) population in a tank, Aquac. Eng., 69, 78, 10.1016/j.aquaeng.2015.10.003
Alsmadi, 2020
Álvarez-Ellacuría, 2020, Image-based, unsupervised estimation of fish size from commercial landings using deep learning, ICES J. Mar. Sci., 77, 1330, 10.1093/icesjms/fsz216
Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Davidson, 2004, Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular ‘Cornell-type’dual-drain tanks, Aquac. Eng., 32, 245, 10.1016/j.aquaeng.2004.03.009
Dodge, S., Karam, L., 2016. Understanding how image quality affects deep neural networks. In 2016 eighth international conference on quality of multimedia experience. IEEE. 1–6.
FAO. 2020.The State of World Fisheries and Aquaculture 2020.Sustainability in action. Rome.
Føre, 2018, Precision fish farming: A new framework to improve production in aquaculture, Biosyst. Eng., 173, 176, 10.1016/j.biosystemseng.2017.10.014
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. Proc. IEEE Comput. Soc. Conf. Comput. Vis. 580–587.
Girshick, R., 2015. Fast r-cnn. Proc. IEEE Comput. Soc. Conf. Comput. Vis. 1440–1448.
Glenn, J., 2020. YOLOv5 Documentation. Available at: https://docs.ultralytics.com/ (Accessed on: March 10, 2022).
Gudivada, 2017, Data quality considerations for big data and machine learning: Going beyond data cleaning and transformations, Int. J. Adv. Soft., 10, 1
Hu, 2020, A method overview in smart aquaculture, Environ. Monit. Assess., 192, 1, 10.1007/s10661-020-08409-9
International Trade Administration, 2020. Aquaculture Industry Summary. Available at: https://www.trade.gov/aquaculture-industry-summary#:∼:text=(i)%20Per%20MarketWatch%2C%20the,3.6%25%20from%202021%2D2026 (Accessed on March 28, 2022).
Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., ... Munigala, V., 2020. Overview and importance of data quality for machine learning tasks. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 3561–3562.
Kim, 2020, Spiking-yolo: spiking neural network for energy-efficient object detection, Proc. AAAI Conf. Artif. Intell., 34, 11270
Lalabadi, 2020, Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines, Aquac. Eng., 90
Liu, 2008, Optimized approximation algorithm in neural networks without overfitting, IEEE Trans. Neural Netw., 19, 983, 10.1109/TNN.2007.915114
Liu, 2016, Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater, Aquac. Eng., 71, 1, 10.1016/j.aquaeng.2016.01.001
Martins, 2010, New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability, Aquac. Eng., 43, 83, 10.1016/j.aquaeng.2010.09.002
Mohamed, 2020, Msr-yolo: Method to enhance fish detection and tracking in fish farms, Procedia Comput. Sci., 170, 539, 10.1016/j.procs.2020.03.123
Monkman, 2019, Using machine vision to estimate fish length from images using regional convolutional neural networks, Methods Ecol. Evol., 10, 2045, 10.1111/2041-210X.13282
O'Donncha, 2019, Precision aquaculture. IEEE Internet Things Mag., 2, 26, 10.1109/IOTM.0001.1900033
Ranjan, 2020, In-field crop physiology sensing aided real-time apple fruit surface temperature monitoring for sunburn prediction, Comput. Electron. Agric., 175, 10.1016/j.compag.2020.105558
Ranjan, 2022, Thermal-RGB imagery and in-field weather sensing derived sweet cherry wetness prediction model, Sci. Hortic., 294, 10.1016/j.scienta.2021.110782
Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 7263-7271.
Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 779–788.
Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28.
Sankaran, 2015, Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review, Eur. J. Agron., 70, 112, 10.1016/j.eja.2015.07.004
Summerfelt, 2004, Developments in recirculating systems for Arctic char culture in North America, Aquac. Eng., 30, 31, 10.1016/j.aquaeng.2003.09.001
Sung, M., Yu, S. C., Girdhar, Y., 2017. Vision based real-time fish detection using convolutional neural network. IEEE OCEANS 2017-Aberdeen. 1–6.
Tang, 2020, An improved YOLOv3 algorithm to detect molting in swimming crabs against a complex background, Aquac. Eng., 91, 10.1016/j.aquaeng.2020.102115
Thorsteinsson, 2002, Tagging methods for stock assessment and research in fisheries, Report of concerted action FAIR CT., 96, 179
2018
Van Rijn, 2013, Waste treatment in recirculating aquaculture systems, Aquac. Eng., 53, 49, 10.1016/j.aquaeng.2012.11.010
Vishwakarma, 2021, Metrics for benchmarking and uncertainty quantification: Quality, applicability, and best practices for machine learning in chemistry, Trends Chem., 3, 146, 10.1016/j.trechm.2020.12.004
Wang, Q., Du, Z., Jiang, G., Cui, M., Li, D., Liu, C., Li, W., 2022. A Real-Time Individual Identification Method for Swimming Fish Based on Improved Yolov5.Available at SSRN 4044575.
Zhang, 2020, Estimation for fish mass using image analysis and neural network, Comput. Electron. Agric., 173, 10.1016/j.compag.2020.105439
Zhao, 2021, Application of machine learning in intelligent fish aquaculture: A review, Aquaculture, 540, 10.1016/j.aquaculture.2021.736724
