Effects of heavy metals on mitogen-activated protein kinase pathways

Environmental Health and Preventive Medicine - Tập 6 Số 4 - Trang 210-217 - 2002
Masato Matsuoka1, Hideki Igisu
1Department of Environmental Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan, [email protected].

Tóm tắt

Từ khóa


Tài liệu tham khảo

Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit. Rev. Toxicol. 2000; 30: 609–627.

Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 1999; 19: 2435–2444.

Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 1996; 271: 24313–24316.

Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 1997; 9: 180–186.

Cobb MH, Goldsmith EJ. How MAP kinases are regulated. J. Biol. Chem. 1995; 270: 14843–14846.

Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 1995; 270: 16483–16486.

Whitmarsh AJ, Davis RJ. Transcription factor AP-I regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 1996; 74: 589–607.

Matsuoka M, Igisu H. Activation of c-Jun NH2-terminal kinase (JNK/SAPK) in LLC-PK1 cells by cadmium. Biochem. Biophys. Res. Commun. 1998; 251: 527–532.

Chen Y-R, Wang X, Templeton D, Davis RJ, Tan T-H. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and γ radiation. Duration of JNK activation may determine cell death and proliferation. J. biol. Chem. 1996; 271: 31929–31936.

Gajate C, Santos-Beneit A, Medolell M, Mollinedo F. Involvement of c-Jun NH2-terminal kinase activation and c-Jun in the induction of apoptosis by the ether phospholipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine. Mol. Pharmacol. 1998; 53: 602–612.

Guo Y-L, Baysal K, Kang B, Yang L-J, Williamson JR. Correlation between sustained c-Jun N-terminal protein kinase activation and apoptosis induced by tumor necrosis factor-α in rat mesangial cells. J. Biol. Chem. 1998; 273: 4027–4034.

Matsuoka M, Call KM. Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int. 1995; 48: 383–389.

Wispriyono B, Matsuoka M, Igisu H, Matsuno K. Protection from cadmium cytotoxicity by N-acetylcysteine in LLC-PK1 cells. J. Pharmacol. Exp. Ther. 1998; 287: 344–351.

Beyersmann D, Hechtenberg S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 1997; 144: 247–261.

van Dam H, Duyndam M, Rottier R, Bosch A, de Vries-Smits L, Herrlich P, Zantema A, Angel P, van der Eb AJ. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 1993; 12: 479–487.

van Dam H, Wilhelm D, Herr I, Steffen A, Herrlich P, Angel P. ATF-2 is preferentially activated by stress-activated protein kinases to mediate c-jun induction in response to genotoxic agents. EMBO J. 1995; 14: 1798–1811.

Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ. Integration of MAP kinase signal transduction pathways at the serum response element. Science 1995; 269: 403–407.

Cavigelli M, Dolfi F, Claret F-X, Karin M. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J. 1995; 14: 5957–5964.

Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1991; 1072: 129–157.

Curran T, Franza BR Jr. Fos and Jun: the AP-1 connection. Cell 1988; 55: 395–397.

Smith JB, Dwyer SD, Smith L. Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J. Biol. Chem. 1989; 264: 7115–7118.

Benters J, Flögel U, Schäfer T, Leibfritz D, Hechtenberg S, Beyersmann D. Study of the interactions of cadmium and zinc ions with cellular calcium homoeostasis using19F-NMR spectroscopy. Biochem. J. 1997; 322: 793–799.

Mitchell FM, Russell M, Johnson GL. Differential calcium dependence in the activation of c-Jun kinase and mitogen-activated protein kinase by muscarinic acetylcholine receptors in rat la cells. Biochem. J. 1995; 309: 381–384.

Zohn IE, Yu H, Li X, Cox AD, Earp HS. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase. Mol. Cell. Biol. 1995; 15: 6160–6168.

Tsangaris GT, Tzortzatou-Stathopoulou F. Cadmium induces apoptosis differentially on immune system cell lines. Toxicology 1998; 128: 143–150.

Iryo Y, Matsuoka M, Wispriyono B, Sugiura T, Igisu H. Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem. Pharmacol. 2000; 60: 1875–1882.

Iordanov MS, Magun BE. Different mechanisms of c-Jun NH2-terminal kinase-1 (JNK1) activation by ultraviolet-B radiation and by oxidative stressors. J. Biol. Chem. 1999; 274: 25801–25806.

Lee SA, Dritschilo A, Jung M. Role of ATM in oxidative stress-mediated c-Jun phosphorylation in response to ionizing radiation and CdCl2. J. Biol. Chem. 2001; 276: 11783–11790.

Templeton DM, Wang Z, Miralem T. Cadmium and calcium-dependent c-fos expression in mesangial cells. Toxicol. Lett. 1998; 95: 1–8.

Wang Z, Templeton DM. Induction of c-fos proto-oncogene in mesangial cells by cadmium. J. Biol. Chem. 1998; 273: 73–79.

Ding W, Templeton DM. Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol. Appl. Pharmacol. 2000; 162: 93–99.

Galán A, Garcia-Bermejo ML, Troyano A, Vilaboa NE, de Blas E, Kazanietz MG, Aller P. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J. Biol. Chem. 2000; 275: 11418–11424.

Alam J, Wicks C, Stewart D, Gong P, Touchard C, Otterbein S, Choi AMK, Burow ME, Tou J. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J. Biol. Chem. 2000; 275: 27694–27702.

Matsuoka M, Igisu H. Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem. Biophys. Res. Commun. 2001; 282: 1120–1125.

Chuang S-M, Wang I-C, Yang J-L. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 2000; 21: 1423–1432.

Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J. Biol. Chem. 1998; 273: 8922–8931.

Hung J-J, Cheng T-J, Lai Y-K, Chang MD-T. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J. Biol. Chem. 1998; 273: 31924–31931.

van den Brink MRM, Kapeller R, Pratt JC, Chang J-H, Burakoff SJ. The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells. J. Biol. Chem. 1999; 274: 11178–11185.

Zhu L, Yu X, Akatsuka Y, Cooper JA, Anasetti C. Role of mitogen-activated protein kinases in activation-induced apoptosis of T cells. Immunology 1999; 97: 26–35.

Epner DE, Herschman HR. Heavy metals induce expression of the TPA-inducible sequence (TIS) genes. J. Cell. Physiol. 1991: 148: 68–74.

Tang N, Enger MD. Cd2−-induced c-myc mRNA accumulation in NRK-49F cells is blocked by the protein kinase inhibitor H7 but not by HA1004, indicating that protein kinase C is a mediator of the response. Toxicology 1993; 81: 155–164.

Lyu RM, Zhuang Y, Pijuan V, Smith JB. Cadmium increases expression of c-myc and c-fos proto-oncogenes in human dermal fibroblasts. Toxicologist 1992; 12: 363.

Matsuoka M, Wispriyono B, Igisu H. Increased cytotoxicity of cadmium in fibroblasts lacking c-fos. Biochem. Pharmacol. 2000; 59: 1573–1576.

Schreiber M, Baumann B, Cotten M, Angel P, Wagner EF Fos is an essential component of the mammalian UV response. EMBO J. 1995; 14: 5338–5349.

Haas S, Kaina B. c-Fos is involved in the cellular defence against the genotoxic effect of UV radiation. Carcinogenesis 1995; 16: 985–991.

Lackinger D, Eichhorn U, Kaina B. Effect of ultraviolet light, methyl methanesulfonate and ionizing radiation on the genotoxic response and apoptosis of mouse fibroblasts lacking c-Fos, p53 or both. Mutagenesis 2001; 16: 233–241.

Kaina B, Haas S, Kappes H. A general role for c-Fos in cellular protection against DNA-damaging carcinogens and cytostatic drugs. Cancer Res. 1997; 57: 2721–2731.

Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, Annab L, Srinivasan DG, Alcorta DA, Barrett JC. Induction of apoptosis by c-Fos protein. Mol. Cell. Biol. 1996; 16: 211–218.

She Q-B, Chen N, Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J. Biol. Chem. 2000; 275: 20444–20449.

Persons DL, Yazlovitskaya EM, Pelling JC. Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J. Biol. Chem. 2000; 275: 35778–35785.

She Q-B, Bode AM, Ma W-Y, Chen N-Y, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001; 61: 1604–1610.

Shih A, Lin H-Y, Davis FB, Davis PJ. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry 2001; 40: 2870–2878.

Milne DM, Campbell LE, Campbell DG, Meek DW. p53 is phosphorylatedin vitro andin vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J. Biol. Chem. 1995; 270: 5511–5518.

Hu MC-T, Qiu WR, Wang Y-P. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene 1997; 15: 2277–2287.

Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999; 18: 6845–6854.

Huang C, Ma W-Y, Maxiner A, Sun Y, Dong Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J. Biol. Chem. 1999; 274: 12229–12235.

Keller D, Zeng X, Li X, Kapoor M, Iordanov MS, Taya Y, Lozano G, Magun B, Lu H. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem. Biophys. Res. Commun. 1999; 261: 464–471.

Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS. A role for the p38 mitogen-activated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res. 2000; 60: 2464–2472.

Takehana K, Sato S, Kobayasi T, Maeda T. A radicicol-related macrocyclic nonaketide compound, antibiotic LL-Z1640-2, inhibits the JNK/p38 pathways in signal-specific manner. Biochem. Biophys. Res. Commun. 1999; 257: 19–23.

Matsuoka M, Wispriyono B, Iryo Y, Igisu H. Mercury chloride activates c-Jun N-terminal kinase and induces c-jun expression in LLC-PK1 cells. Toxicol. Sci. 2000; 53: 361–368.

Matsuoka M, Wispriyono B, Igisu H. Induction of c-fos gene by mercury chloride in LLC-PK1 cells. Chem.-Biol. Interact. 1997; 108: 95–106.

Hirata Y, Adachi K, Kiuchi K. Activation of JNK pathway and induction of apoptosis by manganese in PC12 cells. J. Neurochem. 1998; 71: 1607–1615.

Ramesh GT, Manna SK, Aggarwal BB, Jadhav AL. Lead activates nuclear transcription factor-κB, activator protein-1, and amino-terminal c-Jun kinase in pheochromocytoma cells. Toxicol. Appl. Pharmacol. 1999; 155: 280–286.

Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, Wu W, Bromberg PA, Reed W. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am. J. Physiol. 1998: 275: L551-L558.

Smith MW, Ambudkar IS, Phelps PC, Regec AL, Trump BF. HgCl2-induced changes in cytosolic Ca2+ of cultured rabbit renal tubular cells. Biochim. Biophys. Acta 1987; 931: 130–142.

Matsuoka M, Wispriyono B, Iryo Y, Igisu H, Sugiura T. Inhibition of HgCl2-induced mitogen-activated protein kinase activation by LL-Z1640-2 in CCRF-CEM cells. Eur. J. Pharmacol. 2000; 409: 155–158.

Du J, Suzuki H, Nagase F, Akhand AA, Yokoyama T, Nakashima I. Mercuric chloride stimulates distinct signal transduction pathway for DNA synthesis in a T-cell line, CTLL-2. J. Cell. Biochem. 2000; 78: 500–508.

Akhand AA, Kato M, Suzuki H, Miyata T, Nakashima I. Level of HgCl2-mediated phosphorylation of intracellular proteins determines death of thymic T-lymphocytes with or without DNA fragmentation. J. Cell. Biochem. 1998; 71: 243–253.

Turney KD, Parrish AR, Orozco J, Gandolfi AJ. Selective activation in the MAPK pathway by Hg(II) in precision-cut rabbit renal cortical slices. Toxicol. Appl. Pharmacol. 1999; 160: 262–270.

Yano T, Yano Y, Yuasa M, Horikawa S, Ozasa H, Okada S, Otani S, Hagiwara K. The repetitive activation of extracellular signal-regulated kinase is required for renal regenration in rat. Life Sci. 1998; 62: 2341–2347.

Ghibelli L, Maresca V, Coppola S, Gualandi G. Protease inhibitors block apoptosis at intermediate stages: a compared analysis of DNA fragmentation and apoptotic nuclear morphology. FEBS Lett. 1995; 377: 9–14.

Stridh H, Orrenius S, Hampton MB. Caspase involvement in the induction of apoptosis by the environmental toxicants tributyltin and triphenyltin. Toxicol. Appl. Pharmacol. 1999; 156: 141–146.

Yu Z, Matsuoka M, Wispriyono B, Iryo Y, Igisu H. Activation of mitogen-activated protein kinases by tributyltin in CCRF-CEM cells: role of intracellular Ca2+. Toxicol. Appl. Pharmacol. 2000; 168: 200–207.

Whalen MM, Loganathan BG, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cellsin vitro. Environ. Res. 1999; 81: 108–116.

Snoeij NJ, Penninks AH, Seinen W. Biological activity of organotin compounds-An overview. Environ. Res. 1987; 44: 335–353.

Chow SC, Kass GEN, McCabe MJ Jr, Orrenius S. Tributyltin increases cytosalic free Ca2+ concentration in thymocytes by mobilizing intracellular Ca2+, activating a Ca2+ entry pathway, and inhibiting Ca2+ efflux. Arch. Biochem. Biophys. 1992; 298: 143–149.

Oyama Y, Ueha T, Hayashi A, Chikahisa L. Effect of tri-n-butyltin on intracellular Ca2+ concentration of mouse thymocytes under Ca2+-free condition. Eur. J. Pharmacol. 1994; 270: 137–142.

Aw TY, Nicotera P, Manzo L, Orrenius S. Tributyltin stimulates apoptosis in rat thymocytes. Arch. Biochem. Biophys. 1990; 283: 46–50.

Raffray M, McCarthy D, Snowden RT, Cohen GM. Apoptosis as a mechanism of tributyltin cytotoxicity to thymocytes: relationship of apoptotic markers to biochemical and cellular effects. Toxicol. Appl. Pharmacol. 1993; 119: 122–130.

Stridh H, Gigliotti D, Orrenius S, Cotgreave I. The role of calcium in pre- and postmitochondrial events in tributyltin-induced T-cell apoptosis. Biochem. Biophys. Res. Commun. 1999; 266: 460–465.

Viviani B, Rossi AD, Chow SC, Nicotera P. Organotin compounds induce calcium overload and apoptosis in PC12 cells. Neurotoxicology 1995; 16: 19–25.

Matsuoka M, Igisu H. Induction of c-fos expression by tributyltin in PC12 cells: involvement of intracellular Ca2+. Environ. Toxicol. Pharmacol. 1996; 2: 373–380.

Wispriyono B, Matsuoko M, Igisu H. Effects of pentachlorophenol and tetrachlorohydroquinone on mitogen-activated protein kinase pathways in Jurkat T cells. Environ. Health Perspect. in press.