Effects of greenhouse gases and hypoxia on the population of aquatic species: a fractional mathematical model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chaturvedi, D., Misra, O.P.: Simultaneous effects of the rise in temperature due to greenhouse gases and hypoxia on the dynamics of the aquatic population: a mathematical model. J. Appl. Math. Comput. 63(1), 59–85 (2020)
Misra, O.P., Chaturvedi, D.: Fate of dissolved oxygen and survival of fish population in aquatic ecosystem with nutrient loading: a model. Model. Earth Syst. Environ. 2(3), 1–14 (2016)
Vaquer-Sunyer, R., Duarte, C.M.: Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105(40), 15452–15457 (2008)
Vaquer-Sunyer, R., Duarte, C.M.: Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17(5), 1788–1797 (2011)
Sekerci, Y., Petrovskii, S.: Mathematical modelling of plankton–oxygen dynamics under the climate change. Bull. Math. Biol. 77(12), 2325–2353 (2015)
Sekerci, Y., Petrovskii, S.: Global warming can lead to depletion of oxygen by disrupting phytoplankton photosynthesis: a mathematical modelling approach. Geosciences 8(6), 201 (2018)
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)
Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
Kumar, P., Suat Erturk, V.: The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6935
Kumar, P., Erturk, V.S., Abboubakar, H., Nisar, K.S.: Prediction studies of the epidemic peak of coronavirus disease in Brazil via new generalised Caputo type fractional derivatives. Alex. Eng. J. 60(3), 3189–3204 (2021)
Kumar, P., Erturk, V.S., Murillo-Arcila, M., Banerjee, R., Manickam, A.: A case study of 2019-nCOV cases in Argentina with the real data based on daily cases from March 03, 2020 to March 29, 2021 using classical and fractional derivatives. Adv. Differ. Equ. 2021(1), 1 (2021)
Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D.G., Kumar, P.: A new study of unreported cases of 2019-nCOV epidemic outbreaks. Chaos Solitons Fractals 138, 109929 (2020)
Nabi, K.N., Abboubakar, H., Kumar, P.: Forecasting of COVID-19 pandemic: from integer derivatives to fractional derivatives. Chaos Solitons Fractals 141, 110283 (2020)
Kumar, P., Erturk, V.S., Nisar, K.S., Jamshed, W., Mohamed, M.S.: Fractional dynamics of 2019-nCOV in Spain at different transmission rate with an idea of optimal control problem formulation. Alex. Eng. J. 61, 2204–2219 (2021)
Nabi, K.N., Kumar, P., Erturk, V.S.: Projections and fractional dynamics of COVID-19 with optimal control strategies. Chaos Solitons Fractals 145, 110689 (2021)
Kumar, P., Erturk, V.S.: A case study of Covid-19 epidemic in India via new generalised Caputo type fractional derivatives. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7284
Kumar, P., Erturk, V.S., Murillo-Arcila, M.: A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Results Phys. 24, 104213 (2021)
Atangana, A.: A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 26(8), 1895–1903 (2015)
Kumar, P., Erturk, V.S., Yusuf, A., Sulaiman, T.A.: Lassa hemorrhagic fever model using new generalized Caputo-type fractional derivative operator. Int. J. Model. Simul. Sci. Comput. 12, 2150055 (2021)
Kumar, P., Erturk, V.S.: Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative. Chaos Solitons Fractals 144, 110672 (2021)
Abboubakar, H., Kumar, P., Erturk, V.S., Kumar, A.: A mathematical study of a tuberculosis model with fractional derivatives. Int. J. Model. Simul. Sci. Comput. 12, 2150037 (2021)
Abboubakar, H., Kumar, P., Rangaig, N.A., Kumar, S.: A malaria model with Caputo–Fabrizio and Atangana–Baleanu derivatives. Int. J. Model. Simul. Sci. Comput. 12, 2150013 (2020)
Kumar, P., Erturk, V.S., Almusawa, H.: Mathematical structure of mosaic disease using microbial biostimulants via Caputo and Atangana–Baleanu derivatives. Results Phys. 24, 104186 (2021)
Agarwal, P., Singh, R.: Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach. Phys. A, Stat. Mech. Appl. 547, 124243 (2020)
Kumar, P., Erturk, V.S., Yusuf, A., Nisar, K.S., Abdelwahab, S.F.: A study on canine distemper virus (CDV) and rabies epidemics in the red fox population via fractional derivatives. Results Phys. 25, 104281 (2021)
Kumar, P., Erturk, V.S., Nisar, K.S.: Fractional dynamics of huanglongbing transmission within a citrus tree. Math. Methods Appl. Sci. 44, 11404–11424 (2021)
Kumar, P., Erturk, V.S., Yusuf, A., Kumar, S.: Fractional time-delay mathematical modeling of oncolytic virotherapy. Chaos Solitons Fractals 150, 111123 (2021)
Morales-Delgado, V.F., Gómez-Aguilar, J.F., Saad, K.M., Khan, M.A., Agarwal, P.: Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Phys. A, Stat. Mech. Appl. 523, 48–65 (2019)
Kumar, P., Erturk, V.S., Murillo-Arcila, M.: A complex fractional mathematical modeling for the love story of Layla and Majnun. Chaos Solitons Fractals 150, 111091 (2021)
Angstmann, C.N., Jacobs, B.A., Henry, B.I., Xu, Z.: Intrinsic discontinuities in solutions of evolution equations involving fractional Caputo–Fabrizio and Atangana–Baleanu operators. Mathematics 8(11), Article ID 2023 (2020)
Agarwal, P., Baleanu, D., Chen, Y., Momani, S., Machado, J.A.T.: Fractional calculus. In: ICFDA: International Workshop on Advanced Theory and Applications of Fractional Calculus. Amman (2019)
Agarwal, P., Agarwal, R.P., Ruzhansky, M. (eds.): Special Functions and Analysis of Differential Equations 1st edn. Chapman and Hall/CRC, London (2020)
Agarwal, P., Dragomir, S.S., Jleli, M., Samet, B. (eds.): Advances in Mathematical Inequalities and Applications Springer, Singapore (2018)
Ruzhansky, M., Cho, Y.J., Agarwal, P., Area, I. (eds.): Advances in Real and Complex Analysis with Applications Springer, Singapore (2017)
Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A, Stat. Mech. Appl. 500, 40–49 (2018)
Agarwal, P., Al-Mdallal, Q., Cho, Y.J., Jain, S.: Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018, Article ID 58 (2018)
Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem. Entropy 17(2), 885–902 (2015)
Alderremy, A.A., Saad, K.M., Agarwal, P., Aly, S., Jain, S.: Certain new models of the multi space-fractional Gardner equation. Phys. A, Stat. Mech. Appl. 545, 123806 (2020)
Shahid, A., Mohamed, M.S., Bhatti, M.M., Doranehgard, M.H.: Darcy–Brinkman–Forchheimer model for nano-bioconvection stratified MHD flow through an elastic surface: a successive relaxation approach. Mathematics 9(19), 2514 (2021)
Gepreel, K.A., Mahdy, A.M.S., Mohamed, M.S., Al-Amiri, A.: Reduced differential transform method for solving nonlinear biomathematics models. Comput. Mater. Continua 61(3), 979–994 (2019)
Mahdy, A.M.S., Mohamed, M.S., Gepreel, K.A., AL-Amiri, A., Higazy, M.: Dynamical characteristics and signal flow graph of nonlinear fractional smoking mathematical model. Chaos Solitons Fractals 141, 110308 (2020)
Khater, M.M., Mohamed, M.S., Park, C., Attia, R.A.: Effective computational schemes for a mathematical model of relativistic electrons arising in the laser thermonuclear fusion. Results Phys. 19, 103701 (2020)
Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 156, 94–105 (2020)
Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34(2), 149–179 (2013)
Erturk, V.S., Kumar, P.: Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives. Chaos Solitons Fractals 139, 110280 (2020)
Kumar, P., Erturk, V.S., Kumar, A.: A new technique to solve generalized Caputo type fractional differential equations with the example of computer virus model. J. Math. Ext. 15, 1–23 (2021)