Effects of grain morphology on suffusion susceptibility of cohesionless soils

Granular Matter - Tập 23 Số 1 - 2021
M. Ali Maroof1, Ahmad Mahboubi1, Ali Noorzad1
1Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Foster, M., Fell, R., Spannagle, M.: The statistics of embankment dam failures and accidents. Can. Geotech. J. 37, 1000–1024 (2000). https://doi.org/10.1139/t00-030

ICOLD: Internal erosion of existing dams, levees and dikes, and their foundations. Bull,.1: 342 (2015)

Kenney, T.C., Lau, D.: Internal stability of granular filters. Can. Geotech. J. 22, 215–225 (1985). https://doi.org/10.1139/t86-068

Shire, T., O’Sullivan, C., Hanley, K.J.: The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials. Granul. Matter. 18, (2016). https://doi.org/10.1007/s10035-016-0654-9

Taha, H., Nguyen, N.-S., Marot, D., Hijazi, A., Abou-Saleh, K.: Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials. Granul. Matter. 21, 28 (2019). https://doi.org/10.1007/s10035-019-0867-9

Douglas, K.J., Fell, R., Peirson, W.L., Studholme, H.: Experimental investigation of global backward erosion and suffusion of soils in embankment dams. Can. Geotech. J. 56, 789–807 (2019). https://doi.org/10.1139/cgj-2018-0088

Chapuis, R.P., Saucier, A.: Assessing internal erosion with the modal decomposition method for grain size distribution curves. Acta Geotech. 15(6), 1595–1605 (2019). https://doi.org/10.1007/s11440-019-00865-z

Marot, D., Benamar, A.: Suffusion, Transport and Filtration of Fine Particles in Granular Soil. In: Bonelli, S. (ed.) Erosion of Geomaterials, pp. 39–79. John Wiley & Sons Inc, Hoboken, NJ, USA (2013)

Fannin, R.J., Slangen, P.: On the distinct phenomena of suffusion and suffosion. Géotechnique Lett. 4, 289–294 (2014). https://doi.org/10.1680/geolett.14.00051

Richards, K.S., Reddy, K.R.: Critical appraisal of piping phenomena in earth dams. Bull. Eng. Geol. Environ. 66, 381–402 (2007). https://doi.org/10.1007/s10064-007-0095-0

USBR-USACE: Best practices in dam and levee safety risk analysis, Technical Report Version 4.0. , US Bureau of Reclamation and the US Army Corps of Engineers, Denver, CO, USA (2015)

Hunter, R.P., Bowman, E.T.: Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media. Géotechnique. 68, 918–930 (2018). https://doi.org/10.1680/jgeot.17.P.161

Aboul Hosn, R., Sibille, L., Benahmed, N., Chareyre, B.: A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils. Comput. Geotech. 95, 30–39 (2018). https://doi.org/10.1016/j.compgeo.2017.11.006

Scholtès, L., Hicher, P.-Y., Sibille, L.: Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique. 338, 627–638 (2010). https://doi.org/10.1016/j.crme.2010.10.003

Aberg, B.: Void sizes in granular soils. J. Geotech. Eng. 122, 236–239 (1996). https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(236)

Shire, T., O’Sullivan, C.: Micromechanical assessment of an internal stability criterion. Acta Geotech. 8, 81–90 (2013). https://doi.org/10.1007/s11440-012-0176-5

Kezdi, A.: Soil Physics- Selected Topics. Elsevier, Amsterdam (1979)

Wan, C.F., Fell, R.: Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations. J. Geotech. Geoenviron. Eng. 134, 401–407 (2008). https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(401)

Salehi Sadaghiani, M.R., Witt, K.J.: Experimental identification of mobile particles in suffusible non cohesive soils. Eur. J. Environ. Civ. Eng. 15, 1155–1165 (2011). https://doi.org/10.1080/19648189.2011.9714846

Seghir, A., Benamar, A., Wang, H.: Effects of fine particles on the suffusion of cohesionless soils. Exp. Model. Transp. Porous Media. 103, 233–247 (2014). https://doi.org/10.1007/s11242-014-0299-2

Zhong, C., Le, V.T., Bendahmane, F., Marot, D., Yin, Z.: Investigation of spatial scale effects on suffusion susceptibility. J. Geotech. Geoenviron. Eng. 144, 04018067 (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001935

Chapuis, R.P.: Similarity of internal stability criteria for granular soils. Can. Geotech. J. 29, 711–713 (1992). https://doi.org/10.1139/t92-078

Kovács, G.: Seepage Hydraulics., Elsevier, Amsterdam (1981)

Kenney, T.C., Chahal, R., Chiu, E., Ofoegbu, G.I., Omange, G.N., Ume, C.A.: Controlling constriction sizes of granular filters. Can. Geotech. J. 22, 32–43 (1985). https://doi.org/10.1139/t85-005

Aberg, B.: Washout of grains from filtered sand and gravel materials. J. Geotech. Eng. 119, 36–53 (1993). https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(36)

Seblany, F., Homberg, U., Vincens, E., Winkler, P., Josef Witt, K.: Merging criteria for defining pores and constrictions in numerical packing of spheres. Granul. Matter. 20, 37 (2018). https://doi.org/10.1007/s10035-018-0808-z

Maroof, M.A., Mahboubi, A., Noorzad, A.: A new method to determine specific surface area and shape coefficient of a cohesionless granular medium. Adv. Powder Technol. 31, 3038–3049 (2020). https://doi.org/10.1016/j.apt.2020.05.028

Istomina, V. S.: Filtration stability of soils. In: Oostroizdat. , Moscow, Leningrad (in Russian) (1957)

Kenney, T.C., Lau, D.: Internal stability of granular filters: Reply. Can. Geotech. J. 23, 420–423 (1986). https://doi.org/10.1139/t86-068

Burenkova, V. V.: Assessment of the internal instability for granular soils subjected to seepage. In: 1st international conference, Filters in geotechnical and hydraulic engineering. pp. 357–360. Balkema, Karlsruhe; Germany (1993)

Chang, D.S., Zhang, L.M.: Extended internal stability criteria for soils under seepage. Soils Found. 53, 569–583 (2013). https://doi.org/10.1016/j.sandf.2013.06.008

Skempton, A.W., Brogan, J.M.: Experiments on piping in sandy gravels. Géotechnique. 44, 449–460 (1994). https://doi.org/10.1680/geot.1994.44.3.449

Sibille, L., Marot, D., Sail, Y.: A description of internal erosion by suffusion and induced settlements on cohesionless granular matter. Acta Geotech. 10, 735–748 (2015). https://doi.org/10.1007/s11440-015-0388-6

Adel, H.D., Bakker, K.J., Breteler, M.K.: Internal stability of minestone. In: International Symposium on Modelling Soil–Water- Structure Interactions. p. 225−231. , Balkema, Rotterdam (1988)

Salehi, M., Witt, K., Odenwald, B.: Experimental investigations of critical hydraulic gradients for a soil prone to suffusion. In: Scour and Erosion. pp. 1033–1043. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742 (2016)

Andrianatrehina, L., Souli, H., Rech, J., Taibi, S., Fry, J.-J., Bunieski, S., Fleureau, J.-M.: Determination of the maximum diameter of free fines to assess the internal stability of coarse granular materials. Eur. J. Environ. Civ. Eng. 21, 332–347 (2017). https://doi.org/10.1080/19648189.2015.1116468

Moffat, R.: Experiment on the internal stability of widely graded cohesionless soils, (2005)

Li, S., Russell, A.R., Muir Wood, D.: Influence of particle-size distribution homogeneity on shearing of soils subjected to internal erosion. Can. Geotech. J. 57, 1684–1694 (2020). https://doi.org/10.1139/cgj-2019-0273

Moffat, R., Fannin, R.J., Garner, S.J.: Spatial and temporal progression of internal erosion in cohesionless soil. Can. Geotech. J. 48, 399–412 (2011). https://doi.org/10.1139/T10-071

Slangen, P.: On the influence of effective stress and micro-structure on suffusion and suffosion, PhD thesis, The university of British Columbia, (2015)

Li, M., Fannin, R.J.: Capillary Tube Model for Internal Stability of Cohesionless Soil. J. Geotech. Geoenviron. Eng. 139, 831–834 (2013). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000790

Indraratna, B., Vafai, F.: Analytical Model for Particle Migration within Base Soil-Filter System. J. Geotech. Geoenviron. Eng. 123, 100–109 (1997).

Dallo, Y.A.H., Wang, Y.: Determination of controlling constriction size from capillary tube model for internal stability assessment of granular soils. Soils Found. 56, 315–320 (2016). https://doi.org/10.1016/j.sandf.2016.02.013

Marot, D., Bendahmane, F., Haï Nguyen, H.: Influence of angularity of coarse fraction grains on internal erosion process. La Houille. Blanche 6, 47–53 (2012)

Slangen, P., Fannin, R.J.: The role of particle type on suffusion and suffosion. Géotechnique Lett. 7, 6–10 (2017). https://doi.org/10.1680/jgele.16.00099

Crawford-Flett, K.: An improved hydromechanical understanding of seepage-induced instability phenomena in soil. PhD thesis, The University of British Columbia, Vancouver, Canada (2014)

Sail, Y., Marot, D., Sibille, L., Alexis, A.: Suffusion tests on cohesionless granular matter. Eur. J. Environ. Civ. Eng. 15, 799–817 (2011). https://doi.org/10.1080/19648189.2011.9693366

Marot, D., Rochim, A., Nguyen, H.H., Bendahmane, F., Sibille, L.: Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Nat. Hazards. 83, 365–388 (2016). https://doi.org/10.1007/s11069-016-2319-8

Le, V.T., Marot, D., Rochim, A., Bendahmane, F., Nguyen, H.H.: Suffusion susceptibility investigation by energy-based method and statistical analysis. Can. Geotech. J. 55, 57–68 (2018). https://doi.org/10.1139/cgj-2017-0024

Barrett, P.J.: The shape of rock particles, a critical review. Sedmentology. 27, 291–303 (1980)

Mitchell, J., Soga, K.: Fundamentals of soil behavior. Wiley, New York (2005)

Suhr, B., Six, K.: Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour. Granul. Matter. 22, 43 (2020). https://doi.org/10.1007/s10035-020-1009-0

Su, Y.F., Lee, S.J., Sukumaran, B.: Influence of particle morphology simplification on the simulation of granular material behavior. Granul. Matter. 22(1), 1–12 (2020)

ASTM D2488–09a: Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). ASTM Int. West Conshohocken, PA,. (2009). https://doi.org/10.1520/D2488-09A

Maroof, M.A., Mahboubi, A., Noorzad, A., Safi, Y.: A new approach to particle shape classification of granular materials. Transp. Geotech. 22, 100296 (2020). https://doi.org/10.1016/j.trgeo.2019.100296

Wadell, H.: Volume, Shape, and Roundness of Rock Particles. J. Geol. 40, 443–451 (1932). https://doi.org/10.1086/623964

Powers, M.C.: A New Roundness Scale for Sedimentary Particles. SEPM J. Sediment. Res. 23, 117–119 (1953). https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D

Nguyen, C.D., Benahmed, N., Andò, E., Sibille, L., Philippe, P.: Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotech. 14, 749–765 (2019). https://doi.org/10.1007/s11440-019-00787-w

Moffat, R., Fannin, R.: A Large Permeameter for Study of Internal Stability in Cohesionless Soils. Geotech. Test. J. 29, 273–279 (2006). https://doi.org/10.1520/GTJ100021

Ke, L., Takahashi, A.: Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils Found. 54, 713–730 (2014). https://doi.org/10.1016/j.sandf.2014.06.024

Head, K.H., Epps, R.: Manual of Soil Laboratory Testing—Volume 2: Permeability. Shear Strength and Compressibility Tests, Whittles Publishing (2011)

SanthanaKrishnan, N., Neelakantan, T.R.: Analysis of susceptibility to suffusion. ARPN J. Eng. Appl. Sci. 9, 1999–2008 (2014)

Rochim, A., Marot, D., Sibille, L., Le Thao, V.: Effects of Hydraulic Loading History on Suffusion Susceptibility of Cohesionless Soils. J. Geotech. Geoenviron. Eng. 143, 04017025 (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001673

Luo, Y. L., Qiao, L., Liu, X. Xing, Zhan, M. li, Sheng, J. chang: Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Nat. Hazards. 65: 1361–1377 (2013)

Chapuis, R.P.: Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can. Geotech. J. 41, 787–795 (2004). https://doi.org/10.1139/t04-022

Allen, T.: Particle Size Measurement. Springer, US, Boston, MA (1981)

Van Lopik, J.H., Snoeijers, R., Van Dooren, T.C.G.W., Raoof, A., Schotting, R.J.: The effect of grain size distribution on nonlinear flow behavior in sandy porous media. Transp. Porous Media. 120, 37–66 (2017). https://doi.org/10.1007/s11242-017-0903-3

Witt, K.-J., Brauns, J.: Permeability-Anisotropy Due to Particle Shape. J. Geotech. Eng. 109, 1181–1187 (1983). https://doi.org/10.1061/(ASCE)0733-9410(1983)109:9(1181)

Krumbein, W.C.: The effects of abrasion on the size, shape and roundness of rock fragments. J. Geol. 49, 482–520 (1941). https://doi.org/10.1086/624985

Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. Eng. 132, 591–602 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)