Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của chế độ ăn uống và nhiệt độ đến các chỉ số trạng thái cơ thể và màu sắc da ở rắn ngô
Tóm tắt
Một trong những vấn đề mở trong sinh thái học tiến hóa là độ tin cậy của tín hiệu. Mặc dù quan điểm cho rằng các tín hiệu cần phải tốn kém để trung thực đã thu hút được phần lớn sự chú ý, nhưng loại tín hiệu này có thể chỉ áp dụng cho một số ngữ cảnh nhất định. Hơn nữa, tồn tại những quan điểm khác nhau về bản chất của các chi phí liên quan đến độ trung thực của tín hiệu, và sự phân loại cũng như xem xét các chi phí này vẫn còn gây tranh cãi. Sự phân bổ màu sắc dựa trên sắc tố ở các lớp vỏ động vật đã nhận được sự quan tâm đáng kể từ các nhà nghiên cứu nhằm giải thích điều gì duy trì sự trung thực của các tín hiệu thị giác, nhưng sự ủng hộ cho các giả thuyết hiện tại còn xa mới thuyết phục. Ở đây, chúng tôi sử dụng phương pháp nghiên cứu toàn bộ cơ thể và xem xét một khoảng thời gian đặc biệt, giai đoạn tăng trưởng vị thành niên, để kiểm tra ảnh hưởng của các chế độ ăn uống và nhiệt độ khác nhau đến các tham số vật lý khác nhau và màu sắc da ở rắn ngô (Pantherophis guttatus). Tỷ lệ tăng trưởng chiều dài cơ thể sau sinh và chỉ số khối cơ thể (BMI) nhạy cảm với nhiệt độ, nhưng không nhạy cảm với chế độ ăn uống. Thời gian giữa các đợt lột da ngắn hơn và độ phản xạ ánh sáng ngắn bước sóng của da lưng cao hơn đối với những con rắn nhận thức ăn thường xuyên hơn và có khả năng điều chỉnh nhiệt độ liên tục. Công trình này gợi ý rằng nếu rắn ngô con bị giới hạn bởi môi trường, chiến lược sinh học ưa thích của chúng là tăng trưởng với tốc độ nhanh hơn. Nghiên cứu bổ sung vào khối lượng bằng chứng ngày càng tăng rằng chỉ số BMI có thể không phản ánh chính xác tình trạng cá nhân ở bò sát. Ngược lại, nghiên cứu này cho thấy rằng độ dài của các khoảng thời gian lột da và thành phần ánh sáng ngắn bước sóng của màu sắc da có thể được sử dụng trong hệ thống động vật này như là các chỉ số về tình trạng hoặc chất lượng của cá nhân, có thể phản ánh sự tiếp xúc với căng thẳng môi trường hoặc khả năng đối phó với nó.
Từ khóa
Tài liệu tham khảo
Angilletta, M.J. 2009. Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University Press, New York, 304 pp. ISBN: 9780198570882
Arendt J.D. 1997. Adaptive intrinsic growth rates: an integration across taxa. Quart. Rev. Biol. 72 (2): 149–177. DOI: https://doi.org/10.1086/419764
Bajer K., Molnár O., Török J. & Herczeg G. 2011. Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol. Lett. 7 (6): 866–868. DOI: https://doi.org/10.1098/rsbl.2011.0520
Bajer K., Molnár O., Török J. & Herczeg G. 2012. Temperature, but not available energy, affects the expression of a sexually selected ultraviolet (UV) colour trait in male European green lizards. PLoS One 7: e34359. DOI: https://doi.org/10.1371/journal.pone.0034359
Bates D., Maechler M., Bolker B. & Walker S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67 (1): 1–48. DOI: https://doi.org/10.18637/jss.v067.i01
Bechtel H.B. 1978. Color and pattern in snakes (Reptilia, Serpentes). J. Herpetol. 12 (4): 521–532. DOI: https://doi.org/10.2307/1563357
Bechtel H.B. 1995. Reptile and Amphibian Variants: Colors, Patterns, and Scales. Krieger Publishing Company, University of California, 224 pp. ISBN-10: 0894648624
Bechtel H.B. & Bechtel E. 1978. Heredity of pattern mutation in the corn snake, Elaphe g. guttata, demonstrated in captive breedings. Copeia 4: 719–721. DOI: https://doi.org/10.2307/1443708
Biernaskie J.M., Grafen A. & Perry J.C. 2014. The evolution of index signals to avoid the cost of dishonesty. Proc. R. Soc. B 281: e20140876. DOI: https://doi.org/10.1098/rspb.2014.0876
Blount J.D. & McGraw K.J. 2008. Signal functions of carotenoid colouration, pp. 213–236. DOI: https://doi.org/10.1007/978-3-7643-7499-0_11. In: Britton G., Liaaen-Jensen S. & Pfander H. (eds), Carotenoids, Vol. 4. Natural Functions, Birkhäuser, Basel, 370 pp. ISBN: 978-3-7643-7498-3
Bronikowski A.M. 2000. Experimental evidence for the adaptive evolution of growth rate in the garter snake Thamnophis elegans. Evolution 54 (5): 1760–1767. DOI: https://doi.org/10.1111/j.0014-3820.2000.tb00719.x
Burkett R.D. 1966. Natural history of the cotton-mouth moccasin, Agkistrodon piscivorus (Reptilia). Univ. Kansas Publ. Mus. Nat. Hist. 17 (9): 435–491.
Constantini D. & Møller A.P. 2008. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22 (2): 367–370. DOI: https://doi.org/10.1111/j.1365-2435.2007.01366.x
Cotton S., Fowler K. & Pomiankowski A. 2004. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. B 271: 771–783. DOI: https://doi.org/10.1098/rspb.2004.2688
Cuervo J.J., Belliure J. & Negro J.J. 2016. Coloration reflects skin pterin concentration in a red-tailed lizard. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 193: 17–24. DOI: https://doi.org/10.1016/j.cbpb.2015.11.011
Cuthill I.C., Bennett A.T.D., Partridge J.C. & Maier E.J. 1999. Plumage reflectance and the objective assessment of avian sexual dichromatism. Am. Nat. 153 (2): 183–200. DOI: https://doi.org/10.1086/303160
Duellman W.E. 1978. The Biology of an Equatorial Herpetofauna in Amazonian Ecuador. Miscellaneous publications — University of Kansas, Museum of Natural History — No. 65, 352 pp.
Duellman W.E. & Trueb L. 1986. Biology of Amphibians. Johns Hopkins University Press, Baltimore, 620 pp. ISBN: 9780801847806
Endler J.A. 1983. Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fish. 9: 173–190. DOI: https://doi.org/10.1007/BF00690861
Endler J.A. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41: 315–352. DOI: https://doi.org/10.1111/j.1095-8312.1990.tb00839.x
Getty T. 2002. Signaling health versus parasites. Am. Nat. 159 (4): 363–371. DOI: https://doi.org/10.1086/338992.
Grafen A. 1990. Biological signals as handicaps. J. Theor. Biol. 144 (4): 517–546. DOI: https://doi.org/10.1016/S0022-5193(05)80088-8
Grether G.F., Hudon J. & Endler J.A. 2001. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata). Proc. R. Soc. B 268: 1245–1253. DOI: https://doi.org/10.1098/rspb.2001.1624
Guilford T. & Dawkins M.S. 1991. Receiver psychology and the evolution of animal signals. Anim. Behav. 42 (1): 1–14. DOI: https://doi.org/10.1016/S0003-3472(05)80600-1
Hartley R.C. & Kennedy M.W. 2004. Are carotenoids a red herring in sexual display? Trends Ecol. Evol. 19 (7): 353–354. DOI: https://doi.org/10.1016/j.tree.2004.04.002
Higham J.P. 2013. How does honest costly signaling work? Behav. Ecol. 25: 8–11. DOI: https://doi.org/10.1093/beheco/art097
Hothorn T., Bretz F. & Westfall, P. 2008. Simultaneous inference in general parametric models. Biom. J. 50 (3): 346–363. DOI: https://doi.org/10.1002/bimj.200810425.
Johnsson J.I. & Bohlin T. 2006. The cost of catching up: increased winter mortality following structural growth compensation in the wild. Proc. R. Soc. B 273: 1281–1286. DOI: https://doi.org/10.1098/rspb.2005.3437
Kikuchi D.W., Seymoure B.M. & Pfennig D.W. 2014. Mimicry’s palette: widespread use of conserved pigments in the aposematic signals of snakes. Evol. Dev. 16 (2): 61–67. DOI: https://doi.org/10.1111/ede.12064.
Kopena R., López P. & Martín J. 2014. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: an experimental test. Behav. Ecol. Sociobiol. 68 (4): 571–581. DOI: https://doi.org/10.1007/s00265-013-1672-9
Kopena R., Martín J., López P. & Herczeg G. 2011. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS One 6: e19410. DOI: https://doi.org/10.1371/journal.pone.0019410
Kottler V.A., Koch I., Flötenmeyer M., Hashimoto H., Weigel D. & Dreyer C. 2014. Multiple pigment cell types contribute to the black, blue, and orange ornaments of male guppies (Poecilia reticulata). PLoS One 9: e85647. DOI: https://doi.org/10.1371/journal.pone.0019410
Kozlowski J. & Teriokhin A.T. 1999. Allocation of energy between growth and reproduction: the Pontryagin Maximum Principle solution for the case of age-and season-dependent mortality. Evol. Ecol. Res. 1: 423–441.
Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-30. https://doi.org/CRAN.R-project.org/package=lmerTestpackage=lmerTest (accessed 30.05.2016)
López P. & Martín J. 2005. Intersexual differences in chemical composition of precloacal gland secretions of the amphisbaenian, Blanus cinereus. J. Chem. Ecol. 31 (12): 2913–2921. DOI: https://doi.org/10.1007/s10886-005-8403-2
Love K. & Love B. 2012. Corn Snakes: The Comprehensive Owner’s Guide. I-5 Press, Irvine, CA, 234 pp. ISBN-13: 978-1882770700
Lozano G.A. 1994. Carotenoids, parasites, and sexual selection. Oikos 70 (2): 309–311.
Maia J.P., Harris D.J., Carranza S. & Gómez-Díaz E. 2014. A comparison of multiple methods for estimating parasitemia of haemogregarine hemoparasites (Apicomplexa: Adeleorina) and its applications for studying infection in natural populations. PLoS One 9: e95010. DOI: https://doi.org/10.1371/journal.pone.0095010
Martín J. & López P. 2009. Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behav. Ecol. Sociobiol. 63 (12): 1743–1755. DOI: https://doi.org/10.1007/s00265-009-0794-6
Martín J. & López P. 2014. Pheromones and chemical communication in lizards, Chapter 3, pp. 43–77. In: Rheubert J.L., Siegel D.S. & Trauth S.E. (eds), The Reproductive Biology and Phylogeny of Lizards and Tuatara, CRC Press, Boca Raton, 760 pp. ISBN: 978-1-4665-7986-6
Maynard Smith J. & Harper D. 2003. Animal Signals. Oxford University Press, New York, 176 pp. ISBN: 9780198526858
McGraw K.J. 2005. The antioxidant function of many animal pigments: are there consistent health benefits of sexually selected colourants? Anim. Behav. 69 (4): 757–764. DOI: https://doi.org/10.1016/j.anbehav.2004.06.022
Megía-Palma R., Martínez J. & Merino S. 2016. A structural colour ornament correlates positively with parasite load and body condition in an insular lizard species. Naturwissenschaften 103 (7-8): 1–10. DOI: https://doi.org/10.1007/s00114-016-1378-8
Molnár O., Bajer K., Mészáros B., Török J. & Herczeg G. 2013. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100: 551–558. DOI: https://doi.org/10.1007/s00114-013-1051-4
Moreno-Rueda G. 2010. Experimental test of a trade-off between moult and immune response in house sparrows Passer domesticus. J. Evol. Biol. 23 (10): 2229–2237. DOI: https://doi.org/10.1111/j.1420-9101.2010.02090.x.
Olsson M., Stuart-Fox D. & Ballen C. 2013. Genetics and evolution of colour patterns in reptiles. Semin. Cel. Dev. Biol. 24 (6-7): 529–541. DOI: https://doi.org/10.1016/j.semcdb.2013.04.001.
Pérez i de Lanuza G., Carazo P. & Font E. 2014. Colours of quality: structural (but not pigment) coloration informs about male quality in a polychromatic lizard. Anim. Behav. 90: 73–81. DOI: https://doi.org/10.1016/j.anbehav.2014.01.017
Polnaszek T.J. & Stephens D.W. 2015. Why are signals reliable? Honesty depends on costs, sometimes. Anim. Behav. 110: e13–e16. DOI: https://doi.org/10.1016/j.anbehav.2015.09.011
R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://doi.org/www.R-project.org
Royle N.J., Metcalfe N.B. & Lindström J. 2006. Sexual selection, growth compensation and fast-start swimming performance in Green Swordtails, Xiphophorus helleri. Funct. Ecol. 20 (4): 662–669. DOI: https://doi.org/10.1111/j.1365-2435.2006.01147.x
Royle N.J., Orledge J.M. & Blount J.D. 2015. Early Life-History Effects, Oxidative Stress, and the Evolution and Expression of Animal Signals, pp. 11–46. DOI: https://doi.org/10.1002/9781118966624. ch2. In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0
Ruxton G.D. & Schaefer H.M. 2011. Resolving current disagreements and ambiguities in the terminology of animal communication. J. Evol. Biol. 24 (12): 2574–2585. DOI: https://doi.org/10.1111/j.1420-9101.2011.02386.x
von Schantz T., Bensch S., Grahn M., Hasselquist D. & Wittzell H. 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266: 1–12. DOI: https://doi.org/10.1098/rspb.1999.0597
San-Jose L.M., Granado-Lorencio F., Sinervo B. & Fitze P.S. 2013. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am. Nat. 181 (3): 396–409. DOI: https://doi.org/10.1086/669159
Schielzeth H., 2010. Simple means to improve the interpretability of regression coefficients. Met. Ecol. Evol. 1 (2): 103–113. DOI: https://doi.org/10.1111/j.2041-210X.2010.00012.x
Schielzeth H. & Forstmeier W. 2009. Conclusions beyond support: overconfident estimates in mixed models. Behav. Ecol. 20 (2): 416–420. DOI: https://doi.org/10.1093/beheco/arn145
Searcy W.A. & Nowicki S. 2005. The Evolution of Animal Communication: Reliability and Deception in Signalling Systems. Princeton University Press, Princeton, NJ, 288 pp. ISBN: 9780691070957
Simons M.J., Cohen A.A. & Verhulst S. 2012. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7: e43088. DOI: https://doi.org/10.1371/journal.pone.0043088
Smith G.C. 1976. Ecological energetics of three species of ectothermic vertebrates. Ecology 57: 252–264. DOI: https://doi.org/10.2307/1934814
Steffen J.E. & McGraw K.J. 2007. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species. Comp. Biochem. Physiol. B Mol. Biol. 146: 42–46. DOI:https://doi.org/10.1016/j.cbpb.2006.08.017
Stevens M. 2013. Sensory Ecology, Behaviour, and Evolution. Oxford University Press, Glasgow, 464 pp. ISBN: 9780199601783
Summers K., Speed M.P., Blount J.D. & Stuckert A.M.M. 2015. Are aposematic signals honest? A review. J. Evol. Biol. 28: 1583–1599. DOI: https://doi.org/10.1111/jeb.12676
Svensson P.A. & Wong B.B.M. 2011. Carotenoid-based signals in behavioural ecology: a review. Behaviour 148: 131–189. DOI: https://doi.org/10.1163/000579510X548673
Számadó S. 2011. The cost of honesty and the fallacy of the handicap principle. Anim. Behav. 81 (1): 3–10. DOI: https://doi.org/10.1016/j.anbehav.2010.08.022
Számadó S. & Penn D.J. 2015. Why does costly signalling evolve? Challenges with testing the handicap hypothesis. Anim. Behav. 110: e9–e12. DOI: https://doi.org/10.1016/j.anbehav.2015.06.005
Ullate-Agote A., Milinkovitch M.C. & Tzika A.C. 2015. The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. Int. J. Dev. Biol. 58 (10-12): 881–888. DOI: https://doi.org/10.1387/ijdb.150060at.
Václav R., Prokop P. & Fekiač V. 2007. Expression of breeding coloration in European Green Lizards (Lacerta viridis): variation with morphology and tick infestation. Can. J. Zool. 85: 1199–1206. DOI: https://doi.org/10.1139/Z07-102
Vágási C.I., Pap P.L., Vincze O., Benkő Z., Marton A. & Barta Z. 2012. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PLoS One 7: e40651. DOI: https://doi.org/10.1371/journal.pone.0040651
Vitt L.J. & Caldwell J.P. 2009. Herpethology, 3rd ed. An Introductory Biology of Amphibians and Reptiles. Academic Press, Burlington, MA, 697 pp. ISBN: 978-0-12-374346-6
Werner E.E. & Gilliam J.F. 1984. The ontogenetic niche and species interactions in size-structured populations. Ann. Rev. Ecol. Syst. 15 (1): 393–425. DOI: https://doi.org/10.1146/annurev.es.15.110184.002141
Whiting M.J., Stuart-Fox D.M., O’Connor D., Firth D., Bennett N.C. & Blomberg S.P. 2006. Ultraviolet signals ultraaggression in a lizard. Anim. Behav. 72 (2): e353–e363. DOI: https://doi.org/10.1016/j.anbehav.2005.10.018
Wilgers D.J. & Hebets E.A. 2014. Functional approach to condition, pp. 229–252. DOI: https://doi.org/10.1002/9781118966624.ch9. In: Irschick D.J., Briffa M. & Podos J. (eds), Animal Signaling and Function: An Integrative Approach, John Wiley & Sons, Hoboken, NJ, 280 pp. ISBN: 978-0-470-54600-0
Zahavi A. 1975. Mate selection — a selection for a handicap. J. Theor. Biol. 53 (1): 205–214. DOI: https://doi.org/10.1016/0022-5193(75)90111-3
Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A. & Smith G.M. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY, 574 pp. DOI: https://doi.org/10.1007/978-0-387-87458-6. ISBN: 978-0-387-87457-9