Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus)

Physiological Genomics - Tập 35 Số 3 - Trang 273-282 - 2008
Jan A. Mennigen1,2, Christopher J. Martyniuk1,3, Kate Werry1, Huiling Xiong1, Emily Zhao1, Jason T. Popesku1, Hymie Anisman4, Andrew R. Cossins2, Xuhua Xia1, Vance L. Trudeau1
1Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
2School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
3Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida
4Institute of Neuroscience, Carleton University, Ottawa, Ontario, Canada

Tóm tắt

We investigated the effects of fluoxetine, a selective serotonin reuptake inhibitor, on neuroendocrine function and the reproductive axis in female goldfish. Fish were given intraperitoneal injections of fluoxetine twice a week for 14 days, resulting in five injections of 5 μg fluoxetine/g body wt. We measured the monoamine neurotransmitters serotonin, dopamine, and norepinephrine in addition to their metabolites with HPLC. Homovanillic acid, a metabolite in the dopaminergic pathway, increased significantly in the hypothalamus. Plasma estradiol levels were measured by radioimmunoassay and were significantly reduced approximately threefold after fluoxetine treatment. We found that fluoxetine also significantly reduced the expression of estrogen receptor (ER)β1 mRNA by 4-fold in both the hypothalamus and the telencephalon and ERα mRNA by 1.7-fold in the telencephalon. Fluoxetine had no effect on the expression of ERβ2 mRNA in the hypothalamus or telencephalon. Microarray analysis identified isotocin, a neuropeptide that stimulates reproductive behavior in fish, as a candidate gene affected by fluoxetine treatment. Real-time RT-PCR verified that isotocin mRNA was downregulated approximately sixfold in the hypothalamus and fivefold in the telencephalon. Intraperitoneal injection of isotocin (1 μg/g) increased plasma estradiol, providing a potential link between changes in isotocin gene expression and decreased circulating estrogen in fluoxetine-injected fish. Our results reveal targets of serotonergic modulation in the neuroendocrine brain and indicate that fluoxetine has the potential to affect sex hormones and modulate genes involved in reproductive function and behavior in the brain of female goldfish. We discuss these findings in the context of endocrine disruption because fluoxetine has been detected in the environment.

Từ khóa


Tài liệu tham khảo

10.1021/es072658j

10.1097/00004714-200204000-00005

10.1016/j.yfrne.2006.02.004

10.1897/04-081R.1

10.1074/jbc.M405947200

10.1007/s002130051018

10.1038/ng1031

10.1093/bioinformatics/bti610

10.1006/gcen.1998.7233

10.1038/sj.mp.4001897

10.1016/j.bbrc.2005.03.064

10.1124/jpet.103.050534

10.1242/jeb.01690

10.1210/endo.137.11.8895349

10.1016/0891-0618(94)00030-W

10.1677/joe.0.1510169

Fava M, Rankin M. Sexual functioning and SSRIs. J Clin Psychiatry 63: 13–16, 2002.

10.1016/0306-4522(94)00402-Q

Foran CM, Weston J, Slattery M, Brooks BW, Huggett DB. Reproductive assessment of Japanese medaka (Oryzias latipes) following a four week fluoxetine exposure (SSRI). Arch Environ Contam Toxicol 46: 511–517, 2004.

Glidewell-Kenney C, Hurley LA, Pfaff L, Weiss J, Levine JE, Jameson JL. Nonclassical estrogen receptor α signaling mediates negative feedback in the female reproductive axis. Proc Natl Acad Sci USA 104: 8173–8177, 1993.

10.1038/35001581

10.1111/j.1742-7843.2007.00100.x

10.1016/j.cbpb.2005.12.004

10.1016/0005-2728(79)90188-9

10.1016/0014-5793(95)00832-T

10.1016/j.neuropharm.2007.01.022

10.1152/physrev.1992.72.1.165

10.1006/gcen.1993.1116

10.1002/jez.1402690606

10.1016/S0893-133X(02)00377-9

10.1073/pnas.95.26.15677

Li Q, Muma NA, van de Kar LD. Chronic fluoxetine induces a gradual desensitation of 5-HT1A receptors: reductions in midbrain and Gi and Go proteins and in neuroendocrine response to a 5-HT1A agonist. J Pharmacol Exp Ther 279: 1035–1042, 1996.

10.1016/j.mce.2007.10.013

10.1152/physiolgenomics.00090.2006

10.1016/S0893-133X(98)00040-2

McMaster ME, Munkittrick KR, Van der Kraak GJ. Protocol for measuring circulating levels of gonadal sex steroids in fish. Can Tech Rep Fish Aquat Sci 1836: 1–19, 1992.

10.1677/jme.0.0320975

10.1897/02-627

10.1016/j.chemosphere.2007.06.089

10.2108/zsj.23.23

10.1006/gcen.1999.7343

10.1210/en.2007-1054

10.1007/s00213-005-0213-2

10.1210/endo-126-5-2343

10.1016/j.mce.2008.06.017

Rang HP, Dale MM, Ritter JM, Gardner P (Editors). Pharmacology. New York: Churchill Livingstone, 1995, p. 590–592.

10.1523/JNEUROSCI.21-16-05871.2001

Rehavi M, Attili G, Gil-Ad I, Weizman A. Suppression of serum gonadal steroids in rats by chronic treatment with dopamine and serotonin reuptake inhibitors. Eur Neuropsychopharmacol 10: 145–150, 2000.

10.1176/ajp.149.11.1592

10.1016/j.neulet.2003.08.017

10.1016/0016-6480(92)90010-H

10.1016/j.freeradbiomed.2007.03.033

Savaskan NE, Ufer C, Kühn H, Borchert A. Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function. Biol Chem 388: 1007–1017, 2007.

10.1016/j.brainres.2004.09.030

10.1016/0016-6480(91)90301-L

10.1016/j.psyneuen.2004.03.001

10.1037/0735-7044.118.3.620

10.1139/o99-075

10.1073/pnas.091062498

10.1002/cne.902120205

10.1897/05-495R.1

10.2165/00003088-199324030-00003

10.1016/S0091-3057(98)00010-0

Venkatesh B, Brenner S. Structure and organization of the isotocin and vasotocin genes from teleosts. Adv Exp Med Biol 395: 629–638, 1995.

10.1093/ilar.45.4.455

10.1073/pnas.041617498

10.1006/hbeh.1997.1419

10.1111/j.1095-8649.2007.01738.x

10.1016/0016-6480(91)90010-4

10.1016/j.npep.2006.05.002