Effects of flow restoration on mussel growth in a Wild and Scenic North American River
Tóm tắt
Freshwater mussels remain among the most imperiled species in North America due primarily to habitat loss or degradation. Understanding how mussels respond to habitat changes can improve conservation efforts. Mussels deposit rings in their shell in which age and growth information can be read, and thus used to evaluate how mussels respond to changes in habitat. However, discrepancies between methodological approaches to obtain life history information from growth rings has led to considerable uncertainty regarding the life history characteristics of many mussel species. In this study we compared two processing methods, internal and external ring examination, to obtain age and growth information of two populations of mussels in the St. Croix River, MN, and evaluated how mussel growth responded to changes in the operation of a hydroelectric dam. External ring counts consistently underestimated internal ring counts by 4 years. Despite this difference, internal and external growth patterns were consistent. In 2000, the hydroelectric dam switched from operating on a peaking schedule to run-of-the-river/partial peaking. Growth patterns between an upstream and downstream site of the dam were similar both before and after the change in operation. At the downstream site, however, older mussels had higher growth rates after the change in operation than the same sized mussels collected before the change. Because growth patterns between internal and external processing methods were consistent, we suggest that external processing is an effective method to obtain growth information despite providing inaccurate age information. External processing is advantageous over internal processing due to its non-destructive nature. Applying this information to analyze the influence of the operation change in the hydroelectric dam, we suggest that changing to run-of-the-river/partial peaking operation has benefited the growth of older mussels below the dam.
Tài liệu tham khảo
Gutierrez JL, Jones CG, Strayer DL, Iribarne OO: Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos. 2003, 101: 79-90. 10.1034/j.1600-0706.2003.12322.x.
Spooner DE, Vaughn CC: Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology. 2006, 51: 1016-1024. 10.1111/j.1365-2427.2006.01547.x.
Vaughn CC, Nichols SJ, Spooner DE: Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society. 2008, 27: 409-423. 10.1899/07-058.1.
Neves RJ: Conservation and commerce: management of freshwater mussel (Bivalvia: Unionoidea) resources in the United States. Malacologia. 1999, 41: 461-474.
Williams JD, Warren ML, Cummings KS, Harris JL, Neves RJ: Conservation status of fresh-water mussels of the United States and Canada. Fisheries. 1993, 18: 6-22.
Strayer DL: Freshwater Mussel Ecology: A Multifactor approach to Distribution and Abundance. 2008, Los Angeles: University of California Press
Watters GT: Freshwater mussels and water quality: a review of the effects of hydrologic and instream habitat alterations. In Proceedings of the First Freshwater Mollusk Conservation Society Symposium. 1999, 261-274.
Baxter RM: Environmental effects of dams and impoundments. In Annual Review of Ecology and Systematics. 1977, 255-283.
Galbraith HS, Vaughn CC: Effects of reservoir management on abundance, condition, parasitism and reproductive traits of downstream mussels. River Research and Applications. 2011, 27: 193-201. 10.1002/rra.1350.
Tiemann JS, Dodd HR, Owens N, Wahl DH: Effects of lowhead dams on unionids in the Fox River, Illinois. Northeastern Naturalist. 2007, 14: 125-138. 10.1656/1092-6194(2007)14[125:EOLDOU]2.0.CO;2.
Vaughn CC, Taylor CM: Impoundments and the decline of freshwater mussels: A case study of an extinction gradient. Conservation Biology. 1999, 13: 912-920. 10.1046/j.1523-1739.1999.97343.x.
Williams JD, Fuller SLH, Grace R: Effects of impoundments on freshwater mussels (Mollusca: Bivalvia: Unionidae) in the main channel of the Black Warrior and Tombigbee Rivers in western Alabama. Bulletin Alabama Museum of Natural History. 1992, 1-10.
Dennis B, Munholland PL, Scott JM: Estimation of growth and extinction parameters for endangered species. Ecological Monographs. 1991, 61: 115-143. 10.2307/1943004.
Lutz RA, Rhoads DC: Anaerobiosis and a theory of growth line formation. Science. 1977, 198: 1222-1227. 10.1126/science.198.4323.1222.
Bauer G: Variation in the life-span and size of the fresh-water pearl mussel. Journal of Animal Ecology. 1992, 61: 425-436. 10.2307/5333.
Hastie LC, Young MR, Boon PJ: Growth characteristics of freshwater pearl mussels, Margaritifera margaritifera (L.). Freshwater Biology. 2000, 43: 243-256. 10.1046/j.1365-2427.2000.00544.x.
Negus CL: A quantitative study of growth and production of unionid mussels in River Thames at Reading. Journal of Animal Ecology. 1966, 513-532.
Christian AD, Smith BN, Berg DJ, Smoot JC, Findlay RH: Trophic position and potential food sources of 2 species of unionid bivalves (Mollusca: Unionidae) in 2 small Ohio streams. Journal of the North American Benthological Society. 2004, 23: 101-113. 10.1899/0887-3593(2004)023<0101:TPAPFS>2.0.CO;2.
Nichols SJ, Garling D: Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 2000, 78: 871-882. 10.1139/z99-256.
Raikow DF, Hamilton SK: Bivalve diets in a midwestern US stream: A stable isotope enrichment study. Limnology and Oceanography. 2001, 46: 514-522. 10.4319/lo.2001.46.3.0514.
Thorp JH, Delong MD, Greenwood KS, Casper AF: Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia. 1998, 117: 551-563. 10.1007/s004420050692.
Rypel AL, Haag WR, Findlay RH: Validation of annual growth rings in freshwater mussel shells using cross dating. Canadian Journal of Fisheries and Aquatic Sciences. 2008, 65: 2224-2232. 10.1139/F08-129.
Kesler DH, Downing JA: Internal shell annuli yield inaccurate growth estimates in the freshwater mussels Elliptio complanata and Lampsilis radiata. Freshwater Biology. 1997, 37: 325-332. 10.1046/j.1365-2427.1997.00161.x.
Hanson JM, Mackay WC, Prepas EE: The effects of water depth and density on the growth of a unionid clam. Freshwater Biology. 1988, 19: 345-355. 10.1111/j.1365-2427.1988.tb00356.x.
Morris TJ, Corkum LD: Unionid growth patterns in rivers of differing riparian vegetation. Freshwater Biology. 1999, 42: 59-68. 10.1046/j.1365-2427.1999.00468.x.
Negishi JN, Kayaba Y: Size-specific growth patterns and estimated longevity of the unionid mussel (Pronodularia japanensis). Ecological Research. 2010, 25: 403-411. 10.1007/s11284-009-0670-x.
Bolden SR, Brown KM: Role of stream, habitat, and density in predicting translocation success in the threatened Louisiana pearlshell, Margaritifera hembeli (Conrad). Journal of the North American Benthological Society. 2002, 21: 89-96. 10.2307/1468302.
Chamberlain T: Annual growth of fresh-water mussels. Bulletin of the United States Fish Commission. 1930, 48: 713-739.
Strayer DL, Downing JA, Haag WR, King TL, Layzer JB, Newton TJ, Nichols SJ: Changing perspectives on pearly mussels, North America’s most imperiled animals. Bioscience. 2004, 54: 429-439. 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2.
Beamish RJ, McFarlane GA: The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society. 1983, 112: 735-743. 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2.
Ghent AW, Singer R, Johnsonsinger L: Depth distributions determined with SCUBA, and associated studies of freshwater unionid clams Elliptio-complanata and Anodonta-grandis in Lake Bernard, Ontario. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 1978, 56: 1654-1663. 10.1139/z78-228.
Haag WR, Commens-Carson AM: Testing the assumption of annual shell ring deposition in freshwater mussels. Canadian Journal of Fisheries and Aquatic Sciences. 2008, 65: 493-508. 10.1139/f07-182.
Neves RJ, Moyer SN: Evaluation of techniques for age-determination of fresh-water mussels (Unionidae). American Malacological Bulletin. 1988, 6: 179-188.
Black BA, Dunham JB, Blundon BW, Raggon MF, Zima D: Spatial variability in growth-increment chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions. Ecoscience. 2010, 17: 240-250. 10.2980/17-3-3353.
Haag WR, Rypel AL: Growth and longevity in freshwater mussels: evolutionary and conservation implications. Biological Reviews. 2011, 86: 225-247.
Schone BR, Dunca E, Mutvei H, Norlund U: A 217-year record of summer air temperature reconstructed from freshwater pearl mussels (M. margarifitera, Sweden). Quaternary Science Reviews. 2004, 23: 1803-1816. 10.1016/j.quascirev.2004.02.017.
Haag WR: Extreme longevity in freshwater mussels revisited: sources of bias in age estimates derived from mark-recapture experiments. Freshwater Biology. 2009, 54: 1474-1486. 10.1111/j.1365-2427.2009.02197.x.
Douglas A: Crossdating in dendrochronology. Journal of Forestry. 1939, 39: 825-831.
Grissino-Mayer H: Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research. 2001, 57: 205-221.
Downing WL, Shostell J, Downing JA: Nonannual external annuli in the fresh-water mussels Anodonta-grandis and Lampsilis-radiata-siliquoidea. Freshwater Biology. 1992, 28: 309-317. 10.1111/j.1365-2427.1992.tb00589.x.
Black BA, Boehlert GW, Yoklavich MM: Using tree-ring crossdating techniques to validate annual growth increments in long-lived fishes. Canadian Journal of Fisheries and Aquatic Sciences. 2005, 62: 2277-2284. 10.1139/f05-142.
Mutvei H, Westermark T: How environmental information can be obtained from naiad shells. Ecology and Evolution of the Freshwater Mussels Unionoida. 2001, 145: 367-379. 10.1007/978-3-642-56869-5_21.
Valdovinos C, Pedreros P: Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: Implications for biodiversity conservation. Limnologica. 2007, 37: 63-75. 10.1016/j.limno.2006.08.007.
Moles KR, Layzer JB: Reproductive ecology of Actinonaias ligamentina (Bivalvia: Unionidae) in a regulated river. Journal of the North American Benthological Society. 2008, 27: 212-222. 10.1899/07-006.1.
Hornbach DH, Hove MC, Sansom BJ: Where have all the deertoes gone? The decline in a single species within a multi-species mussel assemplage. Bulletin of the North American Benthological Society. 2011, 58: In Press
Lytle DA, Poff NL: Adaptation to natural flow regimes. Trends in Ecology and Evolution. 2004, 19: 94-100. 10.1016/j.tree.2003.10.002.
Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L: Hydrologic regime and the conservation of salmon life history diversity. Biological Conservation. 2006, 130: 560-572. 10.1016/j.biocon.2006.01.019.
Hornbach DJ, Kurth VJ, Hove MC: Variation in freshwater mussel shell sculpture and shape along a river gradient. The American Midland Naturalist. 2010, 164: 22-36. 10.1674/0003-0031-164.1.22.
Layzer JB, Gordon ME, Anderson RM: Mussels - the forgotten fauna of regulated rivers - a case-study of the Caney Fork River. Regulated Rivers-Research & Management. 1993, 8: 63-71. 10.1002/rrr.3450080110.
Galbraith HS, Vaughn CC: Temperature and food interact to influence gamete development in freshwater mussels. Hydrobiologia. 2009, 636: 35-47. 10.1007/s10750-009-9933-3.
Fago D, Hatch J: Aquatic resources of the St. Croix River Basin. U S Fish and Wildlife Service Biological Report. 1993, 19: 23-56.
Cummings KS, Mayer CA: Field guide to freshwater mussels of the Midwest. 1992, Illinois Natural History Survey
Hornbach DJ: Macrohabitat factors influencing the distribution and abundance of naiads in the St. Croix River, MN and WI, USA. Ecological Studies 145: Ecology and Evolutionary Biology of the Freshwater Mussels Unionoidea. Edited by: Bauer G, Wachtler W. 2001, Berlin: Springer
Clark GR: Study of molluscan shell structure & growth lines using thin sections. Topics in Geobiology. 1980, 1: 603-606.
Cook E, Holmes R: Program ARSTAN and users manual. 1984, Palisades, NY: Lamont Doherty Geological Observatory
Fritts HC, Xiangding W: A comparison between response-function analysis and other regression techniques. Tree-Ring Bulletin. 1986, 46: 31-46.
Anthony JL, Kessler DH, Downing WL, Downing JA: Length-specific growth rates in freshwater mussels (Bivalvia: Unionidae): extreme longevity or generalized growth cessation?. Freshwater Biology. 2001, 46: 1349-1359. 10.1046/j.1365-2427.2001.00755.x.
