Effects of fin parameters on performance of latent heat thermal energy storage systems: A comprehensive review

Sustainable Energy Technologies and Assessments - Tập 47 - Trang 101449 - 2021
M. Eslami1, Fatemeh Khosravi1, H.R. Fallah Kohan1
1School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

EIA - Annual Energy Outlook 2019 n.d. https://www.eia.gov/outlooks/aeo/ (accessed March 16, 2019).

Atear, 2008, Storage of Thermal Energy, Encyclopedia of Life Support Systems (EOLSS)

Yanbing, 1999, A General Model for Analyzing the Thermal Characteristics of a Class of Latent Heat Thermal Energy Storage Systems, J Sol Energy Eng, 121, 185, 10.1115/1.2888165

Osterman, 2012, Review of PCM based cooling technologies for buildings, Energy Build, 49, 37, 10.1016/j.enbuild.2012.03.022

Liu, 2018, A review on macro-encapsulated phase change material for building envelope applications, Build Environ, 144, 281, 10.1016/j.buildenv.2018.08.030

Parameshwaran, 2012, Sustainable thermal energy storage technologies for buildings: A review, Renew Sustain Energy Rev, 16, 2394, 10.1016/j.rser.2012.01.058

Parfait, 2013, A review of potential materials for thermal energy storage in building applications, Renew Sustain Energy Rev, 18, 327, 10.1016/j.rser.2012.10.025

Waqas, 2013, Phase change material (PCM) storage for free cooling of buildings—A review, Renew Sustain Energy Rev, 18, 607, 10.1016/j.rser.2012.10.034

Al-Saadi, 2013, Modeling phase change materials embedded in building enclosure: A review, Renew Sustain Energy Rev, 21, 659, 10.1016/j.rser.2013.01.024

Memon, 2014, Phase change materials integrated in building walls: A state of the art review, Renew Sustain Energy Rev, 31, 870, 10.1016/j.rser.2013.12.042

Madessa, 2014, A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate, Energy Procedia, 62, 318, 10.1016/j.egypro.2014.12.393

Abokersh, 2018, Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS), Int J Energy Res, 42, 329, 10.1002/er.3765

Sharif, 2015, Review of the application of phase change material for heating and domestic hot water systems, Renew Sustain Energy Rev, 42, 557, 10.1016/j.rser.2014.09.034

Omara, 2019, Improving the performance of air conditioning systems by using phase change materials: A review, Int J Energy Res, 43, 5175, 10.1002/er.4507

Al-Abidi, 2012, Review of thermal energy storage for air conditioning systems, Renew Sustain Energy Rev, 16, 5802, 10.1016/j.rser.2012.05.030

Su, 2015, Review of solid–liquid phase change materials and their encapsulation technologies, Renew Sustain Energy Rev, 48, 373, 10.1016/j.rser.2015.04.044

Liu, 2019, Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustain, Energy Fuels, 3, 1091

Dinker, 2017, Heat storage materials, geometry and applications: A review, J Energy Inst, 90, 1, 10.1016/j.joei.2015.10.002

Dhaidan, 2015, Melting and convection of phase change materials in different shape containers: A review, Renew Sustain Energy Rev, 43, 449, 10.1016/j.rser.2014.11.017

Zivkovic, 2001, Analysis of isothermal phase change of phase change material within rectangular and cylindrical containers, Sol Energy, 70, 51, 10.1016/S0038-092X(00)00112-2

Rathod, 2011, Numerical investigation on latent heat storage unit of different configurations, Int J Eng Appl Sci, 7, 100

Ismail, 2000, Ice formation around isothermal radial finned tubes, Energy Convers Manag, 41, 585, 10.1016/S0196-8904(99)00128-4

Tabassum, 2017, 2-D numerical investigation of melting of an impure PCM in the arbitrary-shaped annuli, Int J Therm Sci, 114, 296, 10.1016/j.ijthermalsci.2017.01.006

Vyshak, 2007, Numerical analysis of latent heat thermal energy storage system, Energy Convers Manag, 48, 2161, 10.1016/j.enconman.2006.12.013

Al Siyabi, 2019, An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system, J Energy Storage, 23, 57, 10.1016/j.est.2019.03.010

Kousha, 2017, Effect of inclination angle on the performance of a shell and tube heat storage unit – An experimental study, Appl Therm Eng, 112, 1497, 10.1016/j.applthermaleng.2016.10.203

Hu, 2015, Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs, J Therm Anal Calorim, 120, 1407, 10.1007/s10973-014-4370-6

Alizadeh, 2019, Investigation of LHTESS filled by Hybrid nano-enhanced PCM with Koch snowflake fractal cross section in the presence of thermal radiation, J Mol Liq, 273, 414, 10.1016/j.molliq.2018.10.049

Darzi, 2012, Numerical study of melting inside concentric and eccentric horizontal annulus, Appl Math Model, 36, 4080, 10.1016/j.apm.2011.11.033

Pahamli, 2018, Inner Pipe Downward Movement Effect on Melting of PCM in a Double Pipe Heat Exchanger, Appl Math Comput, 316, 30, 10.1016/j.amc.2017.07.066

Oró, 2012, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy, 99, 513, 10.1016/j.apenergy.2012.03.058

Zhang, 2016, Thermal energy storage: Recent developments and practical aspects, Prog Energy Combust Sci, 53, 1, 10.1016/j.pecs.2015.10.003

Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sustain Energy Rev, 13, 318, 10.1016/j.rser.2007.10.005

Farid, 2004, A review on phase change energy storage: materials and applications, Energy Convers Manag, 45, 1597, 10.1016/j.enconman.2003.09.015

P. Patil P. Prabhu N.N. S. Review of Phase Change Materials For Thermal Energy Storage Applications Int J Eng Res Appl 2:pp.871-875 2012;Vol.

Velraj, 1999, Heat transfer enhancement in latent heat thermal storage systems, Sol Energy, 65, 171, 10.1016/S0038-092X(98)00128-5

Ismail, 2015, A parametric study of solidification of PCM in an annulus with alternating fins, Int J Res Eng Adv Technol, 3

Shatikian, 2005, Numerical investigation of a PCM-based heat sink with internal fins, Int J Heat Mass Transf, 48, 3689, 10.1016/j.ijheatmasstransfer.2004.10.042

Johnson M, Hübner S, Reichmann C, Schönberger M, Fiß M. Experimental analysis of the performance of optimized fin structures in a latent heat energy storage test rig. AIP Conf. Proc., vol. 1850, AIP Publishing LLC ; 2017, p. 080013. https://doi.org/10.1063/1.4984434.

Seeniraj, 2002, Thermal analysis of a finned-tube LHTS module for a solar dynamic power system, Heat Mass Transf, 38, 409, 10.1007/s002310100268

Campos-Celador, 2013, Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system, Energy, 58, 438, 10.1016/j.energy.2013.06.032

Agyenim, 2011, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renew Energy, 36, 108, 10.1016/j.renene.2010.06.005

Kuboth, 2017, Numerical Analysis of Shell-and-Tube Type Latent Thermal Energy Storage Performance with Different Arrangements of Circular Fins, Energies, 10, 274, 10.3390/en10030274

Agyenim F, Eames P, Smyth M. A Comparison of Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins and Multitubes. Proc. ISES World Congr. 2007 (Vol. I – Vol. V), Berlin, Heidelberg: Springer Berlin Heidelberg; 2008, p. 2726–30. https://doi.org/10.1007/978-3-540-75997-3_550.

Sparrow E, W. Ramsey J. Fundamental heat transfer processes related to phase change thermal storage media 1981.

Johnson, 2014, Test and Analysis of a Flat Plate Latent Heat Storage Design, Energy Procedia, 57, 662, 10.1016/j.egypro.2014.10.221

Lacroix, 1993, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube, Int J Heat Mass Transf, 36, 2083, 10.1016/S0017-9310(05)80139-5

Zhang, 1996, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube, Int J Heat Mass Transf, 39, 3165, 10.1016/0017-9310(95)00402-5

Joybari, 2017, Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging, Energy Convers Manag, 152, 136, 10.1016/j.enconman.2017.09.018

Fok, 2010, Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks, Int J Therm Sci, 49, 109, 10.1016/j.ijthermalsci.2009.06.011

Rao, 2018, Enhancement of heat transfer of microcapsulated particles using copper particles and copper foam, Particuology, 41, 85, 10.1016/j.partic.2017.12.010

Siahpush, 2008, Phase Change Heat Transfer Enhancement Using Copper Porous Foam, J Heat Transfer, 130, 10.1115/1.2928010

Tong, 1996, Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material, Numer Heat Transf Part A-Applications -, 30, 125, 10.1080/10407789608913832

Dinesh, 2019, Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems, Int J Heat Mass Transf, 134, 866, 10.1016/j.ijheatmasstransfer.2019.01.095

Chen, 2014, Experimental and numerical study on melting of phase change materials in metal foams at pore scale, Int J Heat Mass Transf, 72, 646, 10.1016/j.ijheatmasstransfer.2014.01.003

Sheikholeslami, 2019, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems, J Clean Prod, 215, 963, 10.1016/j.jclepro.2019.01.122

Elgafy, 2005, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon N Y, 43, 3067, 10.1016/j.carbon.2005.06.042

Li, 2019, Solidification process through a solar energy storage enclosure using various sizes of Al2O3 nanoparticles, J Mol Liq, 275, 941, 10.1016/j.molliq.2018.11.129

Sheikholeslami, 2019, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins, Int J Heat Mass Transf, 130, 1322, 10.1016/j.ijheatmasstransfer.2018.11.020

Abolghasemi, 2012, Heat transfer enhancement of a thermal storage unit consisting of a phase change material and nano-particles, J Renew Sustain Energy, 4, 043124, 10.1063/1.4747824

Hosseinzadeh, 2019, Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation, J Mol Liq, 275, 909, 10.1016/j.molliq.2018.11.109

Farid, 1990, Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperature: Experimental, J Sol Energy Eng, 112, 125, 10.1115/1.2929644

Ezra, 2016, Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit, Appl Therm Eng, 93, 315, 10.1016/j.applthermaleng.2015.09.040

Chiu, 2013, Multistage latent heat cold thermal energy storage design analysis, Appl Energy, 112, 1438, 10.1016/j.apenergy.2013.01.054

Li, 2018, Investigation of the dynamic characteristics of a thermal energy storage unit filled with multiple PCMs, Therm Sci, 22, 37, 10.2298/TSCI171114037L

Wang, 2017, Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array, Energy, 138, 739, 10.1016/j.energy.2017.07.089

Qureshi, 2018, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review, Int J Heat Mass Transf, 127, 838, 10.1016/j.ijheatmasstransfer.2018.08.049

Li, 2012, A review of intercalation composite phase change material: Preparation, structure and properties, Renew Sustain Energy Rev, 16, 2094, 10.1016/j.rser.2012.01.016

Chen, 2014, Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review), Procedia Mater Sci, 4, 389, 10.1016/j.mspro.2014.07.579

Rehman, 2019, A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams, Int J Heat Mass Transf, 135, 649, 10.1016/j.ijheatmasstransfer.2019.02.001

Wang, 2015, Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs), Appl Energy, 142, 328, 10.1016/j.apenergy.2014.12.050

Johnson M, Fiß M, Klemm T. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit. AIP Conf. Proc., vol. 1734, AIP Publishing LLC; 2016, p. 050022. https://doi.org/10.1063/1.4949120.

Kashani, 2012, Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity, Heat Mass Transf, 48, 1155, 10.1007/s00231-012-0965-2

Iachachene, 2019, Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects, J Mol Liq, 292, 110592, 10.1016/j.molliq.2019.03.051

Shahsavar, 2019, Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium, Energy, 171, 751, 10.1016/j.energy.2019.01.045

Chen, 2016, Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM, Energy Convers Manag, 126, 889, 10.1016/j.enconman.2016.08.068

Kozak, 2014, Close-contact melting in vertical annular enclosures with a non-isothermal base: Theoretical modeling and application to thermal storage, Int J Heat Mass Transf, 72, 114, 10.1016/j.ijheatmasstransfer.2013.12.058

Rozenfeld, 2015, Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: Demonstration, modeling and application to thermal storage, Int J Heat Mass Transf, 86, 465, 10.1016/j.ijheatmasstransfer.2015.02.064

Al-Maghalseh, 2018, Methods of heat transfer intensification in PCM thermal storage systems: Review paper, Renew Sustain Energy Rev, 92, 62, 10.1016/j.rser.2018.04.064

Agyenim, 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew Sustain Energy Rev, 14, 615, 10.1016/j.rser.2009.10.015

Yang, 2013, Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system, Sol Energy, 98, 543, 10.1016/j.solener.2013.10.028

Sheikholeslami, 2016, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Appl Therm Eng, 107, 154, 10.1016/j.applthermaleng.2016.06.158

Sparrow, 1981, Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer, Int J Heat Mass Transf, 24, 273, 10.1016/0017-9310(81)90035-1

Smith RN, Koch JD. Numerical solution for freezing adjacent to a finned surface. Proceeding Int. Heat Transf. Conf. 7, Connecticut: Begellhouse; 1982, p. 69–74. https://doi.org/10.1615/IHTC7.710.

Abdulateef, 2018, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renew Sustain Energy Rev, 82, 1620, 10.1016/j.rser.2017.07.009

Lacroix, 1997, Numerical Simulation of Natural Convection-Dominated Melting and Solidification from a Finned Vertical Wall, Numer Heat Transf Appl, 31, 71, 10.1080/10407789708914026

Padmanabhan, 1986, Outward phase change in a cylindrical annulus with axial fins on the inner tube, Int J Heat Mass Transf, 29, 1855, 10.1016/0017-9310(86)90004-9

Hosseini, 2015, Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems, Energy Build, 99, 263, 10.1016/j.enbuild.2015.04.045

Kamkari, 2014, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int J Heat Mass Transf, 78, 839, 10.1016/j.ijheatmasstransfer.2014.07.056

Bondareva, 2018, Conjugate heat transfer in the PCM-based heat storage system with finned copper profile: Application in electronics cooling, Int J Heat Mass Transf, 124, 1275, 10.1016/j.ijheatmasstransfer.2018.04.040

Adem Acır Mehmet Emin Canlı 144 2018 1071 1080.

Liu, 2005, Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins, Energy Convers Manag, 46, 959, 10.1016/j.enconman.2004.05.012

Biwole, 2018, Influence of Fin Size and Distribution on Solid-Liquid Phase Change in a Rectangular Enclosure, Appl Therm Eng, 124, 433

Deng, 2019, Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage, Int J Heat Mass Transf, 130, 532, 10.1016/j.ijheatmasstransfer.2018.10.126

Ismail, 2001, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Appl Therm Eng, 21, 53, 10.1016/S1359-4311(00)00002-8

Al-Abidi, 2013, Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins, Int J Heat Mass Transf, 61, 684, 10.1016/j.ijheatmasstransfer.2013.02.030

Al-Abidi, 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl Therm Eng, 53, 147, 10.1016/j.applthermaleng.2013.01.011

Jmal, 2015, Numerical study of PCM solidification in a finned tube thermal storage including natural convection, Appl Therm Eng, 84, 320, 10.1016/j.applthermaleng.2015.03.065

Jmal, 2018, Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection, Int J Heat Mass Transf, 127, 714, 10.1016/j.ijheatmasstransfer.2018.08.058

Nóbrega, 2019, Enhancement of ice formation around vertical finned tubes for cold storage applications, Int J Refrig, 99, 251, 10.1016/j.ijrefrig.2018.12.018

Velraj, 1997, Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit, Sol Energy, 60, 281, 10.1016/S0038-092X(96)00167-3

Sheikholeslami, 2019, Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int, J Heat Mass Transf, 135, 470, 10.1016/j.ijheatmasstransfer.2019.02.003

Wang, 2016, Numerical investigation of PCM melting process in sleeve tube with internal fins, Energy Convers Manag, 110, 428, 10.1016/j.enconman.2015.12.042

Hosseinzadeh, 2019, Investigation of phase change material solidification process in a LHTESS in the presence of fins with variable thickness and hybrid nanoparticles, Appl Therm Eng, 152, 706, 10.1016/j.applthermaleng.2019.02.111

Erek, 2005, Experimental and numerical investigation of thermal energy storage with a finned tube, Int J Energy Res, 29, 283, 10.1002/er.1057

Horbaniuc, 1996, The correlation between the number of fins and the discharge time for a finned heat pipe latent heat storage system, Renew Energy, 9, 605, 10.1016/0960-1481(96)88361-3

Gharebaghi, 2007, Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins, Numer Heat Transf Part A Appl, 53, 749, 10.1080/10407780701715786

Lacroix, 1998, Analysis of natural convection melting from a heated wall with vertically oriented fins, Int J Numer Methods Heat Fluid Flow, 8, 465, 10.1108/09615539810213241

Yuan, 2016, Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage, Sol Energy, 136, 365, 10.1016/j.solener.2016.07.014

Kazemi, 2018, Improvement of Longitudinal Fins Configuration in Latent Heat Storage Systems, Renew Energy, 116, 447, 10.1016/j.renene.2017.10.006

Deng, 2019, Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube, Energy Build, 183, 161, 10.1016/j.enbuild.2018.11.018

Ji, 2018, Non-uniform heat transfer suppression to enhance PCM melting by angled fins, Appl Therm Eng, 129, 269, 10.1016/j.applthermaleng.2017.10.030

Liu, 2014, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system, Int J Therm Sci, 82, 100, 10.1016/j.ijthermalsci.2014.03.014

Eslami, 2017, Sensible and latent thermal energy storage with constructal fins, Int J Hydrogen Energy, 42, 17681, 10.1016/j.ijhydene.2017.04.097

Lohrasbi, 2016, Discharging process expedition of NEPCM in fin-assisted latent heat thermal energy storage system, J Mol Liq, 221, 833, 10.1016/j.molliq.2016.06.044

Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl Energy, 137, 707, 10.1016/j.apenergy.2014.07.015

Lohrasbi, 2016, Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process, Alexandria Eng J, 55, 2065, 10.1016/j.aej.2016.07.004

Borhani, 2019, Investigation of Phase Change in a Spiral-Fin Heat Exchanger, Appl Math Model, 67, 297, 10.1016/j.apm.2018.10.029

Pizzolato, 2017, Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization, Appl Energy, 208, 210, 10.1016/j.apenergy.2017.10.050

Abdulateef, 2018, Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins, Int Commun Heat Mass Transf, 90, 73, 10.1016/j.icheatmasstransfer.2017.10.003

Abdulateef, 2017, Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, Sol Energy, 155, 142, 10.1016/j.solener.2017.06.024

Sefidan, 2017, Multi-layer PCM solidification in a finned triplex tube considering natural convection, Appl Therm Eng, 123, 901, 10.1016/j.applthermaleng.2017.05.156

Mahdi, 2018, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, Int J Heat Mass Transf, 124, 663, 10.1016/j.ijheatmasstransfer.2018.03.095

Abdulateef, 2018, Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique, Heat Transf Eng, 39, 1067, 10.1080/01457632.2017.1358488

Gil, 2013, Experimental analysis of the effectiveness of a high temperature thermal storage tank for solar cooling applications, Appl Therm Eng, 54, 521, 10.1016/j.applthermaleng.2013.02.016

Ogoh, 2012, Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study, Heat Mass Transf, 48, 1825, 10.1007/s00231-012-1029-3

Murray, 2014, Experimental Study of the Phase Change and Energy Characteristics inside a Cylindrical Latent Heat Energy Storage System: Part 2 Simultaneous Changing and Discharging, Renew Energy, 63, 724, 10.1016/j.renene.2013.10.004

Murray, 2014, Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging, Renew Energy, 62, 571, 10.1016/j.renene.2013.08.007

Zhang, 1996, Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using an External Radial Finned Tube, Int J Heat Mass Transf, 39, 3165, 10.1016/0017-9310(95)00402-5

Chan Choi, 1996, Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage, Sol Energy Mater Sol Cells, 40, 71, 10.1016/0927-0248(95)00084-4

Rathod, 2015, Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins, Appl Therm Eng, 75, 1084, 10.1016/j.applthermaleng.2014.10.074

A. Pizzolato A. Sharma R. Ge K. Maute V. Verda A. Sciacovelli Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements Energy 203 2020 114797 https://doi.org/https://doi.org/10.1016/j.energy.2019.02.155.