Effects of fin parameters on performance of latent heat thermal energy storage systems: A comprehensive review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atear, 2008, Storage of Thermal Energy, Encyclopedia of Life Support Systems (EOLSS)
Yanbing, 1999, A General Model for Analyzing the Thermal Characteristics of a Class of Latent Heat Thermal Energy Storage Systems, J Sol Energy Eng, 121, 185, 10.1115/1.2888165
Osterman, 2012, Review of PCM based cooling technologies for buildings, Energy Build, 49, 37, 10.1016/j.enbuild.2012.03.022
Liu, 2018, A review on macro-encapsulated phase change material for building envelope applications, Build Environ, 144, 281, 10.1016/j.buildenv.2018.08.030
Parameshwaran, 2012, Sustainable thermal energy storage technologies for buildings: A review, Renew Sustain Energy Rev, 16, 2394, 10.1016/j.rser.2012.01.058
Parfait, 2013, A review of potential materials for thermal energy storage in building applications, Renew Sustain Energy Rev, 18, 327, 10.1016/j.rser.2012.10.025
Waqas, 2013, Phase change material (PCM) storage for free cooling of buildings—A review, Renew Sustain Energy Rev, 18, 607, 10.1016/j.rser.2012.10.034
Al-Saadi, 2013, Modeling phase change materials embedded in building enclosure: A review, Renew Sustain Energy Rev, 21, 659, 10.1016/j.rser.2013.01.024
Memon, 2014, Phase change materials integrated in building walls: A state of the art review, Renew Sustain Energy Rev, 31, 870, 10.1016/j.rser.2013.12.042
Madessa, 2014, A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate, Energy Procedia, 62, 318, 10.1016/j.egypro.2014.12.393
Abokersh, 2018, Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS), Int J Energy Res, 42, 329, 10.1002/er.3765
Sharif, 2015, Review of the application of phase change material for heating and domestic hot water systems, Renew Sustain Energy Rev, 42, 557, 10.1016/j.rser.2014.09.034
Omara, 2019, Improving the performance of air conditioning systems by using phase change materials: A review, Int J Energy Res, 43, 5175, 10.1002/er.4507
Al-Abidi, 2012, Review of thermal energy storage for air conditioning systems, Renew Sustain Energy Rev, 16, 5802, 10.1016/j.rser.2012.05.030
Su, 2015, Review of solid–liquid phase change materials and their encapsulation technologies, Renew Sustain Energy Rev, 48, 373, 10.1016/j.rser.2015.04.044
Liu, 2019, Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustain, Energy Fuels, 3, 1091
Dinker, 2017, Heat storage materials, geometry and applications: A review, J Energy Inst, 90, 1, 10.1016/j.joei.2015.10.002
Dhaidan, 2015, Melting and convection of phase change materials in different shape containers: A review, Renew Sustain Energy Rev, 43, 449, 10.1016/j.rser.2014.11.017
Zivkovic, 2001, Analysis of isothermal phase change of phase change material within rectangular and cylindrical containers, Sol Energy, 70, 51, 10.1016/S0038-092X(00)00112-2
Rathod, 2011, Numerical investigation on latent heat storage unit of different configurations, Int J Eng Appl Sci, 7, 100
Ismail, 2000, Ice formation around isothermal radial finned tubes, Energy Convers Manag, 41, 585, 10.1016/S0196-8904(99)00128-4
Tabassum, 2017, 2-D numerical investigation of melting of an impure PCM in the arbitrary-shaped annuli, Int J Therm Sci, 114, 296, 10.1016/j.ijthermalsci.2017.01.006
Vyshak, 2007, Numerical analysis of latent heat thermal energy storage system, Energy Convers Manag, 48, 2161, 10.1016/j.enconman.2006.12.013
Al Siyabi, 2019, An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system, J Energy Storage, 23, 57, 10.1016/j.est.2019.03.010
Kousha, 2017, Effect of inclination angle on the performance of a shell and tube heat storage unit – An experimental study, Appl Therm Eng, 112, 1497, 10.1016/j.applthermaleng.2016.10.203
Hu, 2015, Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs, J Therm Anal Calorim, 120, 1407, 10.1007/s10973-014-4370-6
Alizadeh, 2019, Investigation of LHTESS filled by Hybrid nano-enhanced PCM with Koch snowflake fractal cross section in the presence of thermal radiation, J Mol Liq, 273, 414, 10.1016/j.molliq.2018.10.049
Darzi, 2012, Numerical study of melting inside concentric and eccentric horizontal annulus, Appl Math Model, 36, 4080, 10.1016/j.apm.2011.11.033
Pahamli, 2018, Inner Pipe Downward Movement Effect on Melting of PCM in a Double Pipe Heat Exchanger, Appl Math Comput, 316, 30, 10.1016/j.amc.2017.07.066
Oró, 2012, Review on phase change materials (PCMs) for cold thermal energy storage applications, Appl Energy, 99, 513, 10.1016/j.apenergy.2012.03.058
Zhang, 2016, Thermal energy storage: Recent developments and practical aspects, Prog Energy Combust Sci, 53, 1, 10.1016/j.pecs.2015.10.003
Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sustain Energy Rev, 13, 318, 10.1016/j.rser.2007.10.005
Farid, 2004, A review on phase change energy storage: materials and applications, Energy Convers Manag, 45, 1597, 10.1016/j.enconman.2003.09.015
P. Patil P. Prabhu N.N. S. Review of Phase Change Materials For Thermal Energy Storage Applications Int J Eng Res Appl 2:pp.871-875 2012;Vol.
Velraj, 1999, Heat transfer enhancement in latent heat thermal storage systems, Sol Energy, 65, 171, 10.1016/S0038-092X(98)00128-5
Ismail, 2015, A parametric study of solidification of PCM in an annulus with alternating fins, Int J Res Eng Adv Technol, 3
Shatikian, 2005, Numerical investigation of a PCM-based heat sink with internal fins, Int J Heat Mass Transf, 48, 3689, 10.1016/j.ijheatmasstransfer.2004.10.042
Johnson M, Hübner S, Reichmann C, Schönberger M, Fiß M. Experimental analysis of the performance of optimized fin structures in a latent heat energy storage test rig. AIP Conf. Proc., vol. 1850, AIP Publishing LLC ; 2017, p. 080013. https://doi.org/10.1063/1.4984434.
Seeniraj, 2002, Thermal analysis of a finned-tube LHTS module for a solar dynamic power system, Heat Mass Transf, 38, 409, 10.1007/s002310100268
Campos-Celador, 2013, Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system, Energy, 58, 438, 10.1016/j.energy.2013.06.032
Agyenim, 2011, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renew Energy, 36, 108, 10.1016/j.renene.2010.06.005
Kuboth, 2017, Numerical Analysis of Shell-and-Tube Type Latent Thermal Energy Storage Performance with Different Arrangements of Circular Fins, Energies, 10, 274, 10.3390/en10030274
Agyenim F, Eames P, Smyth M. A Comparison of Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins and Multitubes. Proc. ISES World Congr. 2007 (Vol. I – Vol. V), Berlin, Heidelberg: Springer Berlin Heidelberg; 2008, p. 2726–30. https://doi.org/10.1007/978-3-540-75997-3_550.
Sparrow E, W. Ramsey J. Fundamental heat transfer processes related to phase change thermal storage media 1981.
Johnson, 2014, Test and Analysis of a Flat Plate Latent Heat Storage Design, Energy Procedia, 57, 662, 10.1016/j.egypro.2014.10.221
Lacroix, 1993, Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube, Int J Heat Mass Transf, 36, 2083, 10.1016/S0017-9310(05)80139-5
Zhang, 1996, Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube, Int J Heat Mass Transf, 39, 3165, 10.1016/0017-9310(95)00402-5
Joybari, 2017, Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging, Energy Convers Manag, 152, 136, 10.1016/j.enconman.2017.09.018
Fok, 2010, Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks, Int J Therm Sci, 49, 109, 10.1016/j.ijthermalsci.2009.06.011
Rao, 2018, Enhancement of heat transfer of microcapsulated particles using copper particles and copper foam, Particuology, 41, 85, 10.1016/j.partic.2017.12.010
Siahpush, 2008, Phase Change Heat Transfer Enhancement Using Copper Porous Foam, J Heat Transfer, 130, 10.1115/1.2928010
Tong, 1996, Enhancement of Heat Transfer by Inserting a Metal Matrix Into a Phase Change Material, Numer Heat Transf Part A-Applications -, 30, 125, 10.1080/10407789608913832
Dinesh, 2019, Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems, Int J Heat Mass Transf, 134, 866, 10.1016/j.ijheatmasstransfer.2019.01.095
Chen, 2014, Experimental and numerical study on melting of phase change materials in metal foams at pore scale, Int J Heat Mass Transf, 72, 646, 10.1016/j.ijheatmasstransfer.2014.01.003
Sheikholeslami, 2019, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems, J Clean Prod, 215, 963, 10.1016/j.jclepro.2019.01.122
Elgafy, 2005, Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon N Y, 43, 3067, 10.1016/j.carbon.2005.06.042
Li, 2019, Solidification process through a solar energy storage enclosure using various sizes of Al2O3 nanoparticles, J Mol Liq, 275, 941, 10.1016/j.molliq.2018.11.129
Sheikholeslami, 2019, Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins, Int J Heat Mass Transf, 130, 1322, 10.1016/j.ijheatmasstransfer.2018.11.020
Abolghasemi, 2012, Heat transfer enhancement of a thermal storage unit consisting of a phase change material and nano-particles, J Renew Sustain Energy, 4, 043124, 10.1063/1.4747824
Hosseinzadeh, 2019, Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation, J Mol Liq, 275, 909, 10.1016/j.molliq.2018.11.109
Farid, 1990, Thermal Performance of a Heat Storage Module Using PCM’s With Different Melting Temperature: Experimental, J Sol Energy Eng, 112, 125, 10.1115/1.2929644
Ezra, 2016, Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit, Appl Therm Eng, 93, 315, 10.1016/j.applthermaleng.2015.09.040
Chiu, 2013, Multistage latent heat cold thermal energy storage design analysis, Appl Energy, 112, 1438, 10.1016/j.apenergy.2013.01.054
Li, 2018, Investigation of the dynamic characteristics of a thermal energy storage unit filled with multiple PCMs, Therm Sci, 22, 37, 10.2298/TSCI171114037L
Wang, 2017, Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array, Energy, 138, 739, 10.1016/j.energy.2017.07.089
Qureshi, 2018, Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review, Int J Heat Mass Transf, 127, 838, 10.1016/j.ijheatmasstransfer.2018.08.049
Li, 2012, A review of intercalation composite phase change material: Preparation, structure and properties, Renew Sustain Energy Rev, 16, 2094, 10.1016/j.rser.2012.01.016
Chen, 2014, Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review), Procedia Mater Sci, 4, 389, 10.1016/j.mspro.2014.07.579
Rehman, 2019, A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams, Int J Heat Mass Transf, 135, 649, 10.1016/j.ijheatmasstransfer.2019.02.001
Wang, 2015, Thermal energy charging behaviour of a heat exchange device with a zigzag plate configuration containing multi-phase-change-materials (m-PCMs), Appl Energy, 142, 328, 10.1016/j.apenergy.2014.12.050
Johnson M, Fiß M, Klemm T. Experimental testing of various heat transfer structures in a flat plate thermal energy storage unit. AIP Conf. Proc., vol. 1734, AIP Publishing LLC; 2016, p. 050022. https://doi.org/10.1063/1.4949120.
Kashani, 2012, Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity, Heat Mass Transf, 48, 1155, 10.1007/s00231-012-0965-2
Iachachene, 2019, Melting of phase change materials in a trapezoidal cavity: Orientation and nanoparticles effects, J Mol Liq, 292, 110592, 10.1016/j.molliq.2019.03.051
Shahsavar, 2019, Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium, Energy, 171, 751, 10.1016/j.energy.2019.01.045
Chen, 2016, Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM, Energy Convers Manag, 126, 889, 10.1016/j.enconman.2016.08.068
Kozak, 2014, Close-contact melting in vertical annular enclosures with a non-isothermal base: Theoretical modeling and application to thermal storage, Int J Heat Mass Transf, 72, 114, 10.1016/j.ijheatmasstransfer.2013.12.058
Rozenfeld, 2015, Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: Demonstration, modeling and application to thermal storage, Int J Heat Mass Transf, 86, 465, 10.1016/j.ijheatmasstransfer.2015.02.064
Al-Maghalseh, 2018, Methods of heat transfer intensification in PCM thermal storage systems: Review paper, Renew Sustain Energy Rev, 92, 62, 10.1016/j.rser.2018.04.064
Agyenim, 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew Sustain Energy Rev, 14, 615, 10.1016/j.rser.2009.10.015
Yang, 2013, Numerical analysis on the thermal behavior of high temperature latent heat thermal energy storage system, Sol Energy, 98, 543, 10.1016/j.solener.2013.10.028
Sheikholeslami, 2016, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Appl Therm Eng, 107, 154, 10.1016/j.applthermaleng.2016.06.158
Sparrow, 1981, Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer, Int J Heat Mass Transf, 24, 273, 10.1016/0017-9310(81)90035-1
Smith RN, Koch JD. Numerical solution for freezing adjacent to a finned surface. Proceeding Int. Heat Transf. Conf. 7, Connecticut: Begellhouse; 1982, p. 69–74. https://doi.org/10.1615/IHTC7.710.
Abdulateef, 2018, Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review, Renew Sustain Energy Rev, 82, 1620, 10.1016/j.rser.2017.07.009
Lacroix, 1997, Numerical Simulation of Natural Convection-Dominated Melting and Solidification from a Finned Vertical Wall, Numer Heat Transf Appl, 31, 71, 10.1080/10407789708914026
Padmanabhan, 1986, Outward phase change in a cylindrical annulus with axial fins on the inner tube, Int J Heat Mass Transf, 29, 1855, 10.1016/0017-9310(86)90004-9
Hosseini, 2015, Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems, Energy Build, 99, 263, 10.1016/j.enbuild.2015.04.045
Kamkari, 2014, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int J Heat Mass Transf, 78, 839, 10.1016/j.ijheatmasstransfer.2014.07.056
Bondareva, 2018, Conjugate heat transfer in the PCM-based heat storage system with finned copper profile: Application in electronics cooling, Int J Heat Mass Transf, 124, 1275, 10.1016/j.ijheatmasstransfer.2018.04.040
Liu, 2005, Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins, Energy Convers Manag, 46, 959, 10.1016/j.enconman.2004.05.012
Biwole, 2018, Influence of Fin Size and Distribution on Solid-Liquid Phase Change in a Rectangular Enclosure, Appl Therm Eng, 124, 433
Deng, 2019, Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage, Int J Heat Mass Transf, 130, 532, 10.1016/j.ijheatmasstransfer.2018.10.126
Ismail, 2001, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Appl Therm Eng, 21, 53, 10.1016/S1359-4311(00)00002-8
Al-Abidi, 2013, Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins, Int J Heat Mass Transf, 61, 684, 10.1016/j.ijheatmasstransfer.2013.02.030
Al-Abidi, 2013, Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers, Appl Therm Eng, 53, 147, 10.1016/j.applthermaleng.2013.01.011
Jmal, 2015, Numerical study of PCM solidification in a finned tube thermal storage including natural convection, Appl Therm Eng, 84, 320, 10.1016/j.applthermaleng.2015.03.065
Jmal, 2018, Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection, Int J Heat Mass Transf, 127, 714, 10.1016/j.ijheatmasstransfer.2018.08.058
Nóbrega, 2019, Enhancement of ice formation around vertical finned tubes for cold storage applications, Int J Refrig, 99, 251, 10.1016/j.ijrefrig.2018.12.018
Velraj, 1997, Experimental analysis and numerical modelling of inward solidification on a finned vertical tube for a latent heat storage unit, Sol Energy, 60, 281, 10.1016/S0038-092X(96)00167-3
Sheikholeslami, 2019, Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int, J Heat Mass Transf, 135, 470, 10.1016/j.ijheatmasstransfer.2019.02.003
Wang, 2016, Numerical investigation of PCM melting process in sleeve tube with internal fins, Energy Convers Manag, 110, 428, 10.1016/j.enconman.2015.12.042
Hosseinzadeh, 2019, Investigation of phase change material solidification process in a LHTESS in the presence of fins with variable thickness and hybrid nanoparticles, Appl Therm Eng, 152, 706, 10.1016/j.applthermaleng.2019.02.111
Erek, 2005, Experimental and numerical investigation of thermal energy storage with a finned tube, Int J Energy Res, 29, 283, 10.1002/er.1057
Horbaniuc, 1996, The correlation between the number of fins and the discharge time for a finned heat pipe latent heat storage system, Renew Energy, 9, 605, 10.1016/0960-1481(96)88361-3
Gharebaghi, 2007, Enhancement of Heat Transfer in Latent Heat Storage Modules with Internal Fins, Numer Heat Transf Part A Appl, 53, 749, 10.1080/10407780701715786
Lacroix, 1998, Analysis of natural convection melting from a heated wall with vertically oriented fins, Int J Numer Methods Heat Fluid Flow, 8, 465, 10.1108/09615539810213241
Yuan, 2016, Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage, Sol Energy, 136, 365, 10.1016/j.solener.2016.07.014
Kazemi, 2018, Improvement of Longitudinal Fins Configuration in Latent Heat Storage Systems, Renew Energy, 116, 447, 10.1016/j.renene.2017.10.006
Deng, 2019, Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube, Energy Build, 183, 161, 10.1016/j.enbuild.2018.11.018
Ji, 2018, Non-uniform heat transfer suppression to enhance PCM melting by angled fins, Appl Therm Eng, 129, 269, 10.1016/j.applthermaleng.2017.10.030
Liu, 2014, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system, Int J Therm Sci, 82, 100, 10.1016/j.ijthermalsci.2014.03.014
Eslami, 2017, Sensible and latent thermal energy storage with constructal fins, Int J Hydrogen Energy, 42, 17681, 10.1016/j.ijhydene.2017.04.097
Lohrasbi, 2016, Discharging process expedition of NEPCM in fin-assisted latent heat thermal energy storage system, J Mol Liq, 221, 833, 10.1016/j.molliq.2016.06.044
Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl Energy, 137, 707, 10.1016/j.apenergy.2014.07.015
Lohrasbi, 2016, Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process, Alexandria Eng J, 55, 2065, 10.1016/j.aej.2016.07.004
Borhani, 2019, Investigation of Phase Change in a Spiral-Fin Heat Exchanger, Appl Math Model, 67, 297, 10.1016/j.apm.2018.10.029
Pizzolato, 2017, Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization, Appl Energy, 208, 210, 10.1016/j.apenergy.2017.10.050
Abdulateef, 2018, Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins, Int Commun Heat Mass Transf, 90, 73, 10.1016/j.icheatmasstransfer.2017.10.003
Abdulateef, 2017, Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, Sol Energy, 155, 142, 10.1016/j.solener.2017.06.024
Sefidan, 2017, Multi-layer PCM solidification in a finned triplex tube considering natural convection, Appl Therm Eng, 123, 901, 10.1016/j.applthermaleng.2017.05.156
Mahdi, 2018, Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, Int J Heat Mass Transf, 124, 663, 10.1016/j.ijheatmasstransfer.2018.03.095
Abdulateef, 2018, Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique, Heat Transf Eng, 39, 1067, 10.1080/01457632.2017.1358488
Gil, 2013, Experimental analysis of the effectiveness of a high temperature thermal storage tank for solar cooling applications, Appl Therm Eng, 54, 521, 10.1016/j.applthermaleng.2013.02.016
Ogoh, 2012, Effects of the number and distribution of fins on the storage characteristics of a cylindrical latent heat energy storage system: a numerical study, Heat Mass Transf, 48, 1825, 10.1007/s00231-012-1029-3
Murray, 2014, Experimental Study of the Phase Change and Energy Characteristics inside a Cylindrical Latent Heat Energy Storage System: Part 2 Simultaneous Changing and Discharging, Renew Energy, 63, 724, 10.1016/j.renene.2013.10.004
Murray, 2014, Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging, Renew Energy, 62, 571, 10.1016/j.renene.2013.08.007
Zhang, 1996, Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using an External Radial Finned Tube, Int J Heat Mass Transf, 39, 3165, 10.1016/0017-9310(95)00402-5
Chan Choi, 1996, Heat transfer characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage, Sol Energy Mater Sol Cells, 40, 71, 10.1016/0927-0248(95)00084-4
Rathod, 2015, Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins, Appl Therm Eng, 75, 1084, 10.1016/j.applthermaleng.2014.10.074