Effects of fabrication techniques on the mechanical properties of high entropy alloys: A review
Tài liệu tham khảo
Li, 2021, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118, 10.1016/j.pmatsci.2021.100777
George, 2020, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater., 188, 435, 10.1016/j.actamat.2019.12.015
George, 2019, High-entropy alloys, Nat. Rev. Mater., 4, 515, 10.1038/s41578-019-0121-4
Li, 2019, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci., 102, 296, 10.1016/j.pmatsci.2018.12.003
Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081
Sathiyamoorthi, 2022, High-entropy alloys with heterogeneous microstructure: processing and mechanical properties, Prog. Mater. Sci., 123, 10.1016/j.pmatsci.2020.100709
Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Chen, 2004, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 188, 193, 10.1016/j.surfcoat.2004.08.023
Hsu, 2004, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0. 5Fe alloy with boron addition, Metall. Mater. Trans. A, 35, 1465, 10.1007/s11661-004-0254-x
Huang, 2004, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6, 74, 10.1002/adem.200300507
Yeh, 2004, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35, 2533, 10.1007/s11661-006-0234-4
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375, 213, 10.1016/j.msea.2003.10.257
Jien-Wei, 2006, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat., 31, 633, 10.3166/acsm.31.633-648
Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Lett., 2, 107, 10.1080/21663831.2014.912690
Yeh, 2015, Physical metallurgy of high-entropy alloys, JOM, 67, 2254, 10.1007/s11837-015-1583-5
Cantor, 2014, Multicomponent and high entropy alloys, Entropy, 16, 4749, 10.3390/e16094749
Cantor, 2002, vol. 13, 27
Gao, 2017, Thermodynamics of concentrated solid solution alloys, Curr. Opin. Solid State Mater. Sci., 21, 238, 10.1016/j.cossms.2017.08.001
Gorsse, 2017, Mapping the world of complex concentrated alloys, Acta Mater., 135, 177, 10.1016/j.actamat.2017.06.027
Kim, 2009, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale, Acta Mater., 57, 5245, 10.1016/j.actamat.2009.07.027
Senkov, 2015, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50, 32, 10.1016/j.calphad.2015.04.009
Senkov, 2011, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19, 698, 10.1016/j.intermet.2011.01.004
Middleburgh, 2014, Segregation and migration of species in the CrCoFeNi high entropy alloy, J Alloys Compd., 599, 179, 10.1016/j.jallcom.2014.01.135
Cantor, 2021, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120, 10.1016/j.pmatsci.2020.100754
Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581
Li, 2016, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534, 227, 10.1038/nature17981
Porter, 2009
Guo, 2013, Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study, Metall. Mater. Trans. A, 44, 1994, 10.1007/s11661-012-1474-0
Owen, 2017, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., 122, 11, 10.1016/j.actamat.2016.09.032
Tong, 2017, Probing local lattice distortion in medium-and high-entropy alloys, arXiv preprint, 1
Yeh, 2007, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103, 41, 10.1016/j.matchemphys.2007.01.003
Cao, 2020, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures, Scr. Mater., 187, 250, 10.1016/j.scriptamat.2020.06.008
Chen, 2017, High-throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni high-entropy alloys, J. Phase Equilibria Diffus., 38, 457, 10.1007/s11669-017-0569-0
Dąbrowa, 2016, Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: experimental studies and numerical simulations, J Alloys Compd., 674, 455, 10.1016/j.jallcom.2016.03.046
Jin, 2018, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Mater. Res. Lett., 6, 293, 10.1080/21663831.2018.1446466
Tsai, 2013, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Mater., 61, 4887, 10.1016/j.actamat.2013.04.058
Zhao, 2018, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) 94Ti2Al4 high-entropy alloy, Acta Mater., 147, 184, 10.1016/j.actamat.2018.01.049
Eißmann, 2017, High-entropy alloy CoCrFeMnNi produced by powder metallurgy, Powder Metall., 60, 184, 10.1080/00325899.2017.1318480
Ranganathan, 2003, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85, 1404
Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014
Senkov, 2018, Development and exploration of refractory high entropy alloys—a review, J. Mater. Res., 33, 3092, 10.1557/jmr.2018.153
Butler, 2015, High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys, JOM, 67, 246, 10.1007/s11837-014-1185-7
Chen, 2018, Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy, Mater. Chem. Phys., 210, 20, 10.1016/j.matchemphys.2017.09.004
Li, 2008, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A, 498, 482, 10.1016/j.msea.2008.08.025
Liu, 2012, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A, 548, 64, 10.1016/j.msea.2012.03.080
Tang, 2013, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems, JOM, 65, 1848, 10.1007/s11837-013-0776-z
Veronesi, 2016, Microwave assisted synthesis of Si-modified Mn25FexNi25Cu (50−x) high entropy alloys, Mater. Lett., 162, 277, 10.1016/j.matlet.2015.10.035
Xiao, 2017, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys, Mater. Des., 116, 438, 10.1016/j.matdes.2016.12.036
Zuo, 2017, Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping, Acta Mater., 130, 10, 10.1016/j.actamat.2017.03.013
Diao, 2017, Fundamental deformation behavior in high-entropy alloys: an overview, Curr. Opin. Solid State Mater. Sci., 21, 252, 10.1016/j.cossms.2017.08.003
Li, 2018, Combinatorial metallurgical synthesis and processing of high-entropy alloys, J. Mater. Res., 33, 3156, 10.1557/jmr.2018.214
Bhattacharjee, 2014, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J Alloys Compd., 587, 544, 10.1016/j.jallcom.2013.10.237
Chen, 2005, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corros. Sci., 47, 2257, 10.1016/j.corsci.2004.11.008
Shun, 2009, Age hardening of the Al0. 3CoCrFeNiC0. 1 high entropy alloy, J Alloys Compd., 478, 269, 10.1016/j.jallcom.2008.12.014
Alcala, 2018, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy, J Alloys Compd., 749, 834, 10.1016/j.jallcom.2018.03.358
Joo, 2017, Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering, J Alloys Compd., 698, 591, 10.1016/j.jallcom.2016.12.010
Li, 2018, Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W-20wt.% Cu alloy, J Alloys Compd., 731, 537, 10.1016/j.jallcom.2017.10.081
Alshataif, 2020, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review, Met. Mater. Int., 26, 1099, 10.1007/s12540-019-00565-z
Hemphill, 2012, Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys, Acta Mater., 60, 5723, 10.1016/j.actamat.2012.06.046
Otto, 2014, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54, 39, 10.1016/j.intermet.2014.05.014
Singh, 2011, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater., 59, 182, 10.1016/j.actamat.2010.09.023
Tsao, 2012, Age hardening reaction of the Al0. 3CrFe1. 5MnNi0. 5 high entropy alloy, Mater. Des. (1980-2015), 36, 854, 10.1016/j.matdes.2011.04.067
Zhan, 2009, Application of ductile fracture criteria in spin-forming and tube-bending processes, Comput. Mater. Sci., 47, 353, 10.1016/j.commatsci.2009.08.011
Hou, 2019, Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting, Vacuum, 164, 212, 10.1016/j.vacuum.2019.03.019
Du, 2012, Effect of electromagnetic stirring on microstructure and properties of Al0. 5CoCrCuFeNi alloy, Procedia Eng., 27, 1129, 10.1016/j.proeng.2011.12.562
Fazakas, 2014, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy, Mater. Corros., 65, 691, 10.1002/maco.201206941
Liu, 2017, Microstructure and mechanical properties of refractory HfMo0. 5NbTiV0. 5Six high-entropy composites, J Alloys Compd., 694, 869, 10.1016/j.jallcom.2016.10.014
Luo, 2018, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134, 131, 10.1016/j.corsci.2018.02.031
Yusenko, 2018, High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments, J Alloys Compd., 738, 491, 10.1016/j.jallcom.2017.12.216
Qiu, 2020, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys, Mater. Sci. Eng. A, 769, 10.1016/j.msea.2019.138514
Yao, 2016
Zheng, 2019, Transition of solid-liquid interface and tensile properties of CoCrFeNi high-entropy alloys during directional solidification, J Alloys Compd., 787, 1023, 10.1016/j.jallcom.2019.02.050
Zheng, 2020, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification, J. Mater. Sci. Technol., 38, 19, 10.1016/j.jmst.2019.08.019
Mileiko, 2015, Oxide-fibre/high-entropy-alloy-matrix composites, Compos. Part A Appl. Sci. Manuf., 76, 131, 10.1016/j.compositesa.2015.05.023
He, 2016, Designing eutectic high entropy alloys of CoCrFeNiNbx, J Alloys Compd., 656, 284, 10.1016/j.jallcom.2015.09.153
Yu, 2019, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys, J Alloys Compd., 775, 1376, 10.1016/j.jallcom.2018.10.138
Lawley, 1981, Atomization of specialty alloy powders, JOM, 33, 13, 10.1007/BF03354395
Li, 2010, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci., 256, 4350, 10.1016/j.apsusc.2010.02.030
Yang, 2017, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process, Mater. Chem. Phys., 202, 151, 10.1016/j.matchemphys.2017.09.014
Zhou, 2018, Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization, Trans. Nonferrous Met. Soc. China, 28, 939, 10.1016/S1003-6326(18)64728-4
Yim, 2018, Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders, Mater. Chem. Phys., 210, 95, 10.1016/j.matchemphys.2017.06.013
Liu, 2016, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder, Intermetallics, 68, 16, 10.1016/j.intermet.2015.08.012
Yuhu, 2013, Alnicrfexmo0. 2CoCu high entropy alloys prepared by powder metallurgy, Rare Met. Mater. Eng., 42, 1127, 10.1016/S1875-5372(13)60074-0
Shivam, 2018, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol., 29, 2221, 10.1016/j.apt.2018.06.006
Mahi, 2016
Sun, 2018, A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering, Mater. Sci. Eng. A, 728, 144, 10.1016/j.msea.2018.05.022
Xu, 2015, A comparative study of powder metallurgical (PM) and wrought Fe–Mn–Si alloys, Mater. Sci. Eng. A, 630, 116, 10.1016/j.msea.2015.02.021
Fu, 2016, Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy, Acta Mater., 107, 59, 10.1016/j.actamat.2016.01.050
Francis, 2016, Powder processes, 343
Pan, 2018, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 738, 362, 10.1016/j.msea.2018.09.089
Emamifar, 2019, Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering, Powder Metall., 62, 61, 10.1080/00325899.2019.1576389
Mohanty, 2017, Ageing behaviour of equiatomic consolidated Al20Co20Cu20Ni20Zn20 high entropy alloy, Mater. Charact., 129, 127, 10.1016/j.matchar.2017.04.011
Zhang, 2010, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J Alloys Compd., 495, 33, 10.1016/j.jallcom.2009.12.010
Ganji, 2017, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods, Acta Mater., 125, 58, 10.1016/j.actamat.2016.11.046
Tang, 2015, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A, 647, 229, 10.1016/j.msea.2015.08.078
Joseph, 2018, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys, Mater. Sci. Eng. A, 733, 59, 10.1016/j.msea.2018.07.036
Ocelík, 2016, Additive manufacturing of high-entropy alloys by laser processing, JOM, 68, 1810, 10.1007/s11837-016-1888-z
Salifu, 2022, Recent development in the additive manufacturing of polymer-based composites for automotive structures—a review, Int. J. Adv. Manuf. Technol., 119, 6877, 10.1007/s00170-021-08569-z
Salifu, 2022, Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites, Int. J. Adv. Manuf. Technol., 1
Li, 2018, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property, J Alloys Compd., 746, 125, 10.1016/j.jallcom.2018.02.298
Li, 2018, Additive manufacturing of advanced multi-component alloys: bulk metallic glasses and high entropy alloys, Adv. Eng. Mater., 20, 10.1002/adem.201700874
Khan, 2019, High entropy alloy thin films of AlCoCrCu0. 5FeNi with controlled microstructure, Appl. Surf. Sci., 495, 10.1016/j.apsusc.2019.143560
Pou, 2010, Production of biomaterial coatings by laser-assisted processes, 394
Cropper, 2018, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition, Appl. Surf. Sci., 455, 153, 10.1016/j.apsusc.2018.05.172
Lu, 2019, Microstructures and mechanical properties of CoCrFeNiAl0. 3 high-entropy alloy thin films by pulsed laser deposition, Appl. Surf. Sci., 494, 72, 10.1016/j.apsusc.2019.07.186
Michelmore, 2016, Thin film growth on biomaterial surfaces, 29
Juhasz, 2011, Surface modification of biomaterials by calcium phosphate deposition, 143
Kim, 2019, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater., 80, 286, 10.1016/j.ijrmhm.2019.02.005
Cheng, 2019, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process, Appl. Surf. Sci., 478, 478, 10.1016/j.apsusc.2019.01.203
Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68, 214, 10.1016/j.actamat.2014.01.029
Wang, 2017, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication, J Alloys Compd., 694, 971, 10.1016/j.jallcom.2016.10.138
Jiang, 2018, Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys, J Alloys Compd., 741, 826, 10.1016/j.jallcom.2018.01.247
Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J Alloys Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171
Huang, 2018, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Sci. China Technol. Sci., 61, 117, 10.1007/s11431-017-9134-6
Zhang, 2018, Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content, Mater. Sci. Eng. A, 733, 299, 10.1016/j.msea.2018.07.069
Cui, 2018, Microstructure and mechanical behaviors of CoFeNiMnTixAl1-x high entropy alloys, Mater. Sci. Eng. A, 731, 124, 10.1016/j.msea.2018.06.022
Guo, 2015, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81, 87, 10.1016/j.matdes.2015.05.019
Wang, 2018, Effect of Al addition on structural evolution and mechanical properties of the AlxHfNbTiZr high-entropy alloys, Mater. Today Commun., 16, 242, 10.1016/j.mtcomm.2018.06.004
Han, 2017, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84, 153, 10.1016/j.intermet.2017.01.007
Juan, 2015, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, 62, 76, 10.1016/j.intermet.2015.03.013
Guo, 2016, Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0. 5NbHf0. 5ZrTi matrix alloy composite, Intermetallics, 69, 74, 10.1016/j.intermet.2015.09.011
Li, 2016, Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method, Mater. Des., 95, 183, 10.1016/j.matdes.2016.01.112
Han, 2018, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Mater. Sci. Eng. A, 712, 380, 10.1016/j.msea.2017.12.004
Yurchenko, 2018, Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys, J Alloys Compd., 757, 403, 10.1016/j.jallcom.2018.05.099
Zhang, 2018, Enhancement of< 001> recrystallization texture in non-equiatomic Fe-Ni-Co-Al-based high entropy alloys by combination of annealing and Cr addition, J Alloys Compd., 768, 277, 10.1016/j.jallcom.2018.07.221
Wong, 2018, Microstructures and properties of Al0. 3CoCrFeNiMnx high-entropy alloys, Mater. Chem. Phys., 210, 146, 10.1016/j.matchemphys.2017.07.085
Liu, 2019, Microstructure and mechanical properties of FeCoCrNiMnTi0. 1C0. 1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Vacuum, 165, 297, 10.1016/j.vacuum.2019.04.043
Brif, 2015, The use of high-entropy alloys in additive manufacturing, Scr. Mater., 99, 93, 10.1016/j.scriptamat.2014.11.037
Maulik, 2016, Structural evolution of spark plasma sintered AlFeCuCrMgx (x= 0, 0.5, 1, 1.7) high entropy alloys, Intermetallics, 77, 46, 10.1016/j.intermet.2016.07.001
Yurkova, 2019, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering, J Alloys Compd., 786, 139, 10.1016/j.jallcom.2019.01.341
Ni, 2018, Characterization of Al0. 5FeCu0. 7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding, Opt. Laser Technol., 105, 257, 10.1016/j.optlastec.2018.01.058
Qiu, 2018, Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification, J Alloys Compd., 735, 359, 10.1016/j.jallcom.2017.11.158
Rao, 2016, Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties, Intermetallics, 77, 23, 10.1016/j.intermet.2016.06.011
Ye, 2016, High-entropy alloy: challenges and prospects, Mater. Today, 19, 349, 10.1016/j.mattod.2015.11.026
Senkov, 2015, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., 6, 1, 10.1038/ncomms7529
Troparevsky, 2015, Criteria for predicting the formation of single-phase high-entropy alloys, Phys. Rev. X, 5, 011041
Ye, 2015, Design of high entropy alloys: a single-parameter thermodynamic rule, Scr. Mater., 104, 53, 10.1016/j.scriptamat.2015.03.023
Poletti, 2014, Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems, Acta Mater., 75, 297, 10.1016/j.actamat.2014.04.033
Ye, 2015, A geometric model for intrinsic residual strain and phase stability in high entropy alloys, Acta Mater., 94, 152, 10.1016/j.actamat.2015.04.051
Ye, 2015, The generalized thermodynamic rule for phase selection in multicomponent alloys, Intermetallics, 59, 75, 10.1016/j.intermet.2014.12.011
Guruvidyathri, 2020, Challenges in design and development of high entropy alloys: a thermodynamic and kinetic perspective, Scr. Mater., 188, 37, 10.1016/j.scriptamat.2020.06.060
Saunders, 1998
Kalidindi, 2015
Zhou, 2014, Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment, Phys. Rev. B, 90, 10.1103/PhysRevB.90.184102
Kaptay, 2012, Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions, J. Mater. Sci., 47, 8320, 10.1007/s10853-012-6772-9