Effects of fabrication techniques on the mechanical properties of high entropy alloys: A review

Smith Salifu1, Peter Apata Olubambi1
1Centre for Nanomechanics and Tribocorrosion, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, South Africa

Tài liệu tham khảo

Li, 2021, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118, 10.1016/j.pmatsci.2021.100777 George, 2020, High entropy alloys: a focused review of mechanical properties and deformation mechanisms, Acta Mater., 188, 435, 10.1016/j.actamat.2019.12.015 George, 2019, High-entropy alloys, Nat. Rev. Mater., 4, 515, 10.1038/s41578-019-0121-4 Li, 2019, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys, Prog. Mater. Sci., 102, 296, 10.1016/j.pmatsci.2018.12.003 Miracle, 2017, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448, 10.1016/j.actamat.2016.08.081 Sathiyamoorthi, 2022, High-entropy alloys with heterogeneous microstructure: processing and mechanical properties, Prog. Mater. Sci., 123, 10.1016/j.pmatsci.2020.100709 Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001 Chen, 2004, Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 188, 193, 10.1016/j.surfcoat.2004.08.023 Hsu, 2004, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0. 5Fe alloy with boron addition, Metall. Mater. Trans. A, 35, 1465, 10.1007/s11661-004-0254-x Huang, 2004, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Adv. Eng. Mater., 6, 74, 10.1002/adem.200300507 Yeh, 2004, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35, 2533, 10.1007/s11661-006-0234-4 Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567 Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375, 213, 10.1016/j.msea.2003.10.257 Jien-Wei, 2006, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat., 31, 633, 10.3166/acsm.31.633-648 Tsai, 2014, High-entropy alloys: a critical review, Mater. Res. Lett., 2, 107, 10.1080/21663831.2014.912690 Yeh, 2015, Physical metallurgy of high-entropy alloys, JOM, 67, 2254, 10.1007/s11837-015-1583-5 Cantor, 2014, Multicomponent and high entropy alloys, Entropy, 16, 4749, 10.3390/e16094749 Cantor, 2002, vol. 13, 27 Gao, 2017, Thermodynamics of concentrated solid solution alloys, Curr. Opin. Solid State Mater. Sci., 21, 238, 10.1016/j.cossms.2017.08.001 Gorsse, 2017, Mapping the world of complex concentrated alloys, Acta Mater., 135, 177, 10.1016/j.actamat.2017.06.027 Kim, 2009, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale, Acta Mater., 57, 5245, 10.1016/j.actamat.2009.07.027 Senkov, 2015, Accelerated exploration of multi-principal element alloys for structural applications, Calphad, 50, 32, 10.1016/j.calphad.2015.04.009 Senkov, 2011, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19, 698, 10.1016/j.intermet.2011.01.004 Middleburgh, 2014, Segregation and migration of species in the CrCoFeNi high entropy alloy, J Alloys Compd., 599, 179, 10.1016/j.jallcom.2014.01.135 Cantor, 2021, Multicomponent high-entropy Cantor alloys, Prog. Mater. Sci., 120, 10.1016/j.pmatsci.2020.100754 Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581 Li, 2016, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534, 227, 10.1038/nature17981 Porter, 2009 Guo, 2013, Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study, Metall. Mater. Trans. A, 44, 1994, 10.1007/s11661-012-1474-0 Owen, 2017, An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy, Acta Mater., 122, 11, 10.1016/j.actamat.2016.09.032 Tong, 2017, Probing local lattice distortion in medium-and high-entropy alloys, arXiv preprint, 1 Yeh, 2007, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103, 41, 10.1016/j.matchemphys.2007.01.003 Cao, 2020, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures, Scr. Mater., 187, 250, 10.1016/j.scriptamat.2020.06.008 Chen, 2017, High-throughput determination of interdiffusion coefficients for Co-Cr-Fe-Mn-Ni high-entropy alloys, J. Phase Equilibria Diffus., 38, 457, 10.1007/s11669-017-0569-0 Dąbrowa, 2016, Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: experimental studies and numerical simulations, J Alloys Compd., 674, 455, 10.1016/j.jallcom.2016.03.046 Jin, 2018, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys, Mater. Res. Lett., 6, 293, 10.1080/21663831.2018.1446466 Tsai, 2013, Sluggish diffusion in co–cr–fe–mn–ni high-entropy alloys, Acta Mater., 61, 4887, 10.1016/j.actamat.2013.04.058 Zhao, 2018, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) 94Ti2Al4 high-entropy alloy, Acta Mater., 147, 184, 10.1016/j.actamat.2018.01.049 Eißmann, 2017, High-entropy alloy CoCrFeMnNi produced by powder metallurgy, Powder Metall., 60, 184, 10.1080/00325899.2017.1318480 Ranganathan, 2003, Alloyed pleasures: multimetallic cocktails, Curr. Sci., 85, 1404 Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014 Senkov, 2018, Development and exploration of refractory high entropy alloys—a review, J. Mater. Res., 33, 3092, 10.1557/jmr.2018.153 Butler, 2015, High-temperature oxidation behavior of Al-Co-Cr-Ni-(Fe or Si) multicomponent high-entropy alloys, JOM, 67, 246, 10.1007/s11837-014-1185-7 Chen, 2018, Temperature effects on the serrated behavior of an Al0. 5CoCrCuFeNi high-entropy alloy, Mater. Chem. Phys., 210, 20, 10.1016/j.matchemphys.2017.09.004 Li, 2008, Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy, Mater. Sci. Eng. A, 498, 482, 10.1016/j.msea.2008.08.025 Liu, 2012, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A, 548, 64, 10.1016/j.msea.2012.03.080 Tang, 2013, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems, JOM, 65, 1848, 10.1007/s11837-013-0776-z Veronesi, 2016, Microwave assisted synthesis of Si-modified Mn25FexNi25Cu (50−x) high entropy alloys, Mater. Lett., 162, 277, 10.1016/j.matlet.2015.10.035 Xiao, 2017, Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr, Ti) high entropy alloys, Mater. Des., 116, 438, 10.1016/j.matdes.2016.12.036 Zuo, 2017, Tailoring magnetic behavior of CoFeMnNiX (X= Al, Cr, Ga, and Sn) high entropy alloys by metal doping, Acta Mater., 130, 10, 10.1016/j.actamat.2017.03.013 Diao, 2017, Fundamental deformation behavior in high-entropy alloys: an overview, Curr. Opin. Solid State Mater. Sci., 21, 252, 10.1016/j.cossms.2017.08.003 Li, 2018, Combinatorial metallurgical synthesis and processing of high-entropy alloys, J. Mater. Res., 33, 3156, 10.1557/jmr.2018.214 Bhattacharjee, 2014, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, J Alloys Compd., 587, 544, 10.1016/j.jallcom.2013.10.237 Chen, 2005, Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel, Corros. Sci., 47, 2257, 10.1016/j.corsci.2004.11.008 Shun, 2009, Age hardening of the Al0. 3CoCrFeNiC0. 1 high entropy alloy, J Alloys Compd., 478, 269, 10.1016/j.jallcom.2008.12.014 Alcala, 2018, Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy, J Alloys Compd., 749, 834, 10.1016/j.jallcom.2018.03.358 Joo, 2017, Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering, J Alloys Compd., 698, 591, 10.1016/j.jallcom.2016.12.010 Li, 2018, Effects of milling time and sintering temperature on structural evolution, densification behavior and properties of a W-20wt.% Cu alloy, J Alloys Compd., 731, 537, 10.1016/j.jallcom.2017.10.081 Alshataif, 2020, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review, Met. Mater. Int., 26, 1099, 10.1007/s12540-019-00565-z Hemphill, 2012, Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys, Acta Mater., 60, 5723, 10.1016/j.actamat.2012.06.046 Otto, 2014, Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries, Intermetallics, 54, 39, 10.1016/j.intermet.2014.05.014 Singh, 2011, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater., 59, 182, 10.1016/j.actamat.2010.09.023 Tsao, 2012, Age hardening reaction of the Al0. 3CrFe1. 5MnNi0. 5 high entropy alloy, Mater. Des. (1980-2015), 36, 854, 10.1016/j.matdes.2011.04.067 Zhan, 2009, Application of ductile fracture criteria in spin-forming and tube-bending processes, Comput. Mater. Sci., 47, 353, 10.1016/j.commatsci.2009.08.011 Hou, 2019, Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting, Vacuum, 164, 212, 10.1016/j.vacuum.2019.03.019 Du, 2012, Effect of electromagnetic stirring on microstructure and properties of Al0. 5CoCrCuFeNi alloy, Procedia Eng., 27, 1129, 10.1016/j.proeng.2011.12.562 Fazakas, 2014, Microstructural evolution and corrosion behavior of Al25Ti25Ga25Be25 equi-molar composition alloy, Mater. Corros., 65, 691, 10.1002/maco.201206941 Liu, 2017, Microstructure and mechanical properties of refractory HfMo0. 5NbTiV0. 5Six high-entropy composites, J Alloys Compd., 694, 869, 10.1016/j.jallcom.2016.10.014 Luo, 2018, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134, 131, 10.1016/j.corsci.2018.02.031 Yusenko, 2018, High-pressure high-temperature tailoring of High Entropy Alloys for extreme environments, J Alloys Compd., 738, 491, 10.1016/j.jallcom.2017.12.216 Qiu, 2020, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys, Mater. Sci. Eng. A, 769, 10.1016/j.msea.2019.138514 Yao, 2016 Zheng, 2019, Transition of solid-liquid interface and tensile properties of CoCrFeNi high-entropy alloys during directional solidification, J Alloys Compd., 787, 1023, 10.1016/j.jallcom.2019.02.050 Zheng, 2020, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification, J. Mater. Sci. Technol., 38, 19, 10.1016/j.jmst.2019.08.019 Mileiko, 2015, Oxide-fibre/high-entropy-alloy-matrix composites, Compos. Part A Appl. Sci. Manuf., 76, 131, 10.1016/j.compositesa.2015.05.023 He, 2016, Designing eutectic high entropy alloys of CoCrFeNiNbx, J Alloys Compd., 656, 284, 10.1016/j.jallcom.2015.09.153 Yu, 2019, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys, J Alloys Compd., 775, 1376, 10.1016/j.jallcom.2018.10.138 Lawley, 1981, Atomization of specialty alloy powders, JOM, 33, 13, 10.1007/BF03354395 Li, 2010, Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting, Appl. Surf. Sci., 256, 4350, 10.1016/j.apsusc.2010.02.030 Yang, 2017, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process, Mater. Chem. Phys., 202, 151, 10.1016/j.matchemphys.2017.09.014 Zhou, 2018, Microstructure evolution of Al0. 6CoCrFeNi high entropy alloy powder prepared by high pressure gas atomization, Trans. Nonferrous Met. Soc. China, 28, 939, 10.1016/S1003-6326(18)64728-4 Yim, 2018, Compaction behavior of water-atomized CoCrFeMnNi high-entropy alloy powders, Mater. Chem. Phys., 210, 95, 10.1016/j.matchemphys.2017.06.013 Liu, 2016, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder, Intermetallics, 68, 16, 10.1016/j.intermet.2015.08.012 Yuhu, 2013, Alnicrfexmo0. 2CoCu high entropy alloys prepared by powder metallurgy, Rare Met. Mater. Eng., 42, 1127, 10.1016/S1875-5372(13)60074-0 Shivam, 2018, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol., 29, 2221, 10.1016/j.apt.2018.06.006 Mahi, 2016 Sun, 2018, A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering, Mater. Sci. Eng. A, 728, 144, 10.1016/j.msea.2018.05.022 Xu, 2015, A comparative study of powder metallurgical (PM) and wrought Fe–Mn–Si alloys, Mater. Sci. Eng. A, 630, 116, 10.1016/j.msea.2015.02.021 Fu, 2016, Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7. 5Cu17. 5 high-entropy alloy, Acta Mater., 107, 59, 10.1016/j.actamat.2016.01.050 Francis, 2016, Powder processes, 343 Pan, 2018, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 738, 362, 10.1016/j.msea.2018.09.089 Emamifar, 2019, Microstructural evolution and mechanical properties of AlCrFeNiCoC high entropy alloy produced via spark plasma sintering, Powder Metall., 62, 61, 10.1080/00325899.2019.1576389 Mohanty, 2017, Ageing behaviour of equiatomic consolidated Al20Co20Cu20Ni20Zn20 high entropy alloy, Mater. Charact., 129, 127, 10.1016/j.matchar.2017.04.011 Zhang, 2010, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J Alloys Compd., 495, 33, 10.1016/j.jallcom.2009.12.010 Ganji, 2017, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro-and nanoindentation methods, Acta Mater., 125, 58, 10.1016/j.actamat.2016.11.046 Tang, 2015, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A, 647, 229, 10.1016/j.msea.2015.08.078 Joseph, 2018, Effect of hot isostatic pressing on the microstructure and mechanical properties of additive manufactured AlxCoCrFeNi high entropy alloys, Mater. Sci. Eng. A, 733, 59, 10.1016/j.msea.2018.07.036 Ocelík, 2016, Additive manufacturing of high-entropy alloys by laser processing, JOM, 68, 1810, 10.1007/s11837-016-1888-z Salifu, 2022, Recent development in the additive manufacturing of polymer-based composites for automotive structures—a review, Int. J. Adv. Manuf. Technol., 119, 6877, 10.1007/s00170-021-08569-z Salifu, 2022, Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites, Int. J. Adv. Manuf. Technol., 1 Li, 2018, Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: processability, non-equilibrium microstructure and mechanical property, J Alloys Compd., 746, 125, 10.1016/j.jallcom.2018.02.298 Li, 2018, Additive manufacturing of advanced multi-component alloys: bulk metallic glasses and high entropy alloys, Adv. Eng. Mater., 20, 10.1002/adem.201700874 Khan, 2019, High entropy alloy thin films of AlCoCrCu0. 5FeNi with controlled microstructure, Appl. Surf. Sci., 495, 10.1016/j.apsusc.2019.143560 Pou, 2010, Production of biomaterial coatings by laser-assisted processes, 394 Cropper, 2018, Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition, Appl. Surf. Sci., 455, 153, 10.1016/j.apsusc.2018.05.172 Lu, 2019, Microstructures and mechanical properties of CoCrFeNiAl0. 3 high-entropy alloy thin films by pulsed laser deposition, Appl. Surf. Sci., 494, 72, 10.1016/j.apsusc.2019.07.186 Michelmore, 2016, Thin film growth on biomaterial surfaces, 29 Juhasz, 2011, Surface modification of biomaterials by calcium phosphate deposition, 143 Kim, 2019, Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films, Int. J. Refract. Met. Hard Mater., 80, 286, 10.1016/j.ijrmhm.2019.02.005 Cheng, 2019, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process, Appl. Surf. Sci., 478, 478, 10.1016/j.apsusc.2019.01.203 Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68, 214, 10.1016/j.actamat.2014.01.029 Wang, 2017, Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication, J Alloys Compd., 694, 971, 10.1016/j.jallcom.2016.10.138 Jiang, 2018, Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys, J Alloys Compd., 741, 826, 10.1016/j.jallcom.2018.01.247 Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J Alloys Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171 Huang, 2018, Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Sci. China Technol. Sci., 61, 117, 10.1007/s11431-017-9134-6 Zhang, 2018, Microstructure and enhanced mechanical behavior of the Al7Co24Cr21Fe24Ni24 high-entropy alloy system by tuning the Cr content, Mater. Sci. Eng. A, 733, 299, 10.1016/j.msea.2018.07.069 Cui, 2018, Microstructure and mechanical behaviors of CoFeNiMnTixAl1-x high entropy alloys, Mater. Sci. Eng. A, 731, 124, 10.1016/j.msea.2018.06.022 Guo, 2015, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81, 87, 10.1016/j.matdes.2015.05.019 Wang, 2018, Effect of Al addition on structural evolution and mechanical properties of the AlxHfNbTiZr high-entropy alloys, Mater. Today Commun., 16, 242, 10.1016/j.mtcomm.2018.06.004 Han, 2017, Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys, Intermetallics, 84, 153, 10.1016/j.intermet.2017.01.007 Juan, 2015, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, 62, 76, 10.1016/j.intermet.2015.03.013 Guo, 2016, Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0. 5NbHf0. 5ZrTi matrix alloy composite, Intermetallics, 69, 74, 10.1016/j.intermet.2015.09.011 Li, 2016, Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method, Mater. Des., 95, 183, 10.1016/j.matdes.2016.01.112 Han, 2018, Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys, Mater. Sci. Eng. A, 712, 380, 10.1016/j.msea.2017.12.004 Yurchenko, 2018, Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys, J Alloys Compd., 757, 403, 10.1016/j.jallcom.2018.05.099 Zhang, 2018, Enhancement of< 001> recrystallization texture in non-equiatomic Fe-Ni-Co-Al-based high entropy alloys by combination of annealing and Cr addition, J Alloys Compd., 768, 277, 10.1016/j.jallcom.2018.07.221 Wong, 2018, Microstructures and properties of Al0. 3CoCrFeNiMnx high-entropy alloys, Mater. Chem. Phys., 210, 146, 10.1016/j.matchemphys.2017.07.085 Liu, 2019, Microstructure and mechanical properties of FeCoCrNiMnTi0. 1C0. 1 high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Vacuum, 165, 297, 10.1016/j.vacuum.2019.04.043 Brif, 2015, The use of high-entropy alloys in additive manufacturing, Scr. Mater., 99, 93, 10.1016/j.scriptamat.2014.11.037 Maulik, 2016, Structural evolution of spark plasma sintered AlFeCuCrMgx (x= 0, 0.5, 1, 1.7) high entropy alloys, Intermetallics, 77, 46, 10.1016/j.intermet.2016.07.001 Yurkova, 2019, Structure formation and mechanical properties of the high-entropy AlCuNiFeCr alloy prepared by mechanical alloying and spark plasma sintering, J Alloys Compd., 786, 139, 10.1016/j.jallcom.2019.01.341 Ni, 2018, Characterization of Al0. 5FeCu0. 7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding, Opt. Laser Technol., 105, 257, 10.1016/j.optlastec.2018.01.058 Qiu, 2018, Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification, J Alloys Compd., 735, 359, 10.1016/j.jallcom.2017.11.158 Rao, 2016, Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties, Intermetallics, 77, 23, 10.1016/j.intermet.2016.06.011 Ye, 2016, High-entropy alloy: challenges and prospects, Mater. Today, 19, 349, 10.1016/j.mattod.2015.11.026 Senkov, 2015, Accelerated exploration of multi-principal element alloys with solid solution phases, Nat. Commun., 6, 1, 10.1038/ncomms7529 Troparevsky, 2015, Criteria for predicting the formation of single-phase high-entropy alloys, Phys. Rev. X, 5, 011041 Ye, 2015, Design of high entropy alloys: a single-parameter thermodynamic rule, Scr. Mater., 104, 53, 10.1016/j.scriptamat.2015.03.023 Poletti, 2014, Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems, Acta Mater., 75, 297, 10.1016/j.actamat.2014.04.033 Ye, 2015, A geometric model for intrinsic residual strain and phase stability in high entropy alloys, Acta Mater., 94, 152, 10.1016/j.actamat.2015.04.051 Ye, 2015, The generalized thermodynamic rule for phase selection in multicomponent alloys, Intermetallics, 59, 75, 10.1016/j.intermet.2014.12.011 Guruvidyathri, 2020, Challenges in design and development of high entropy alloys: a thermodynamic and kinetic perspective, Scr. Mater., 188, 37, 10.1016/j.scriptamat.2020.06.060 Saunders, 1998 Kalidindi, 2015 Zhou, 2014, Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment, Phys. Rev. B, 90, 10.1103/PhysRevB.90.184102 Kaptay, 2012, Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions, J. Mater. Sci., 47, 8320, 10.1007/s10853-012-6772-9