Effects of evolutionary history and life form on extinction risk of Chinese flowering plants
Tài liệu tham khảo
An, 2021, Distinct responses of leaf traits to environment and phylogeny between herbaceous and woody angiosperm species in China, Front. Plant Sci., 12, 10.3389/fpls.2021.799401
Bellard, 2016, Global patterns in threats to vertebrates by biological invasions, Proc. R. Soc. B: Biol. Sci., 283, 10.1098/rspb.2015.2454
Bellard, 2021, Looming extinctions due to invasive species: irreversible loss of ecological strategy and evolutionary history, Glob. Change Biol., 27, 4967, 10.1111/gcb.15771
Bennett, 1997, Variation in extinction risk among birds: chance or evolutionary predisposition?, Proc. R. Soc. B: Biol. Sci., 264, 401, 10.1098/rspb.1997.0057
Blomberg, 2003, Testing for phylogenetic signal in comparative data: behavioral traits are more labile, Evolution, 57, 717
Böhm, 2016, Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size, Glob. Ecol. Biogeogr., 25, 391, 10.1111/geb.12419
Brook, 2008, Synergies among extinction drivers under global change, Trends Ecol. Evol., 23, 453, 10.1016/j.tree.2008.03.011
Chen, 2018, Is the East Asian flora ancient or not?, Natl. Sci. Rev., 5, 920, 10.1093/nsr/nwx156
Chen, 2023, Extinction risk of Chinese angiosperms varies between woody and herbaceous species, Divers. Distrib., 29, 232, 10.1111/ddi.13655
Chichorro, 2022, Trait-based prediction of extinction risk across terrestrial taxa, Biol. Conserv., 274, 10.1016/j.biocon.2022.109738
Daru, 2013, A global trend towards the loss of evolutionarily unique species in mangrove ecosystems, PLoS ONE, 8, 10.1371/journal.pone.0066686
Davies, 2019, The macroecology and macroevolution of plant species at risk, N. Phytol., 222, 708, 10.1111/nph.15612
Davies, 2011, Extinction risk and diversification are linked in a plant biodiversity hotspot, PLoS Biol., 9, 10.1371/journal.pbio.1000620
Feng, 2017, Historical anthropogenic footprints in the distribution of threatened plants in China, Biol. Conserv., 210, 3, 10.1016/j.biocon.2016.05.038
Flores, 2014, An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants, Ecol. Evol., 4, 2799, 10.1002/ece3.1087
Forest, 2018, Gymnosperms on the EDGE, Sci. Rep., 8, 10.1038/s41598-018-24365-4
Fu, 2022, Linking evolutionary dynamics to species extinction for flowering plants in global biodiversity hotspots, Divers. Distrib., 28, 2871, 10.1111/ddi.13603
Funk, 2019, Evolutionary distinctiveness and conservation priorities in a large radiation of songbirds, Anim. Conserv., 22, 274, 10.1111/acv.12462
Gamba, 2020, Global patterns of population genetic differentiation in seed plants, Mol. Ecol., 29, 3413, 10.1111/mec.15575
Gaston, 1997, Evolutionary age and risk of extinction in the global avifauna, Evolut. Ecol., 11, 557, 10.1007/s10682-997-1511-4
Geiser, 2007, Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens, Environ. Pollut., 145, 203, 10.1016/j.envpol.2006.03.024
Gomes, 2019, Amazonian tree species threatened by deforestation and climate change, Nat. Clim. Change, 9, 547, 10.1038/s41558-019-0500-2
Greenberg, 2021, Evolutionary legacies in contemporary tetrapod imperilment, Ecol. Lett., 24, 2464, 10.1111/ele.13868
Gurevitch, 2004, Are invasive species a major cause of extinctions?, Trends Ecol. Evol., 19, 470, 10.1016/j.tree.2004.07.005
Haddad, 2015, Habitat fragmentation and its lasting impact on earth’s ecosystems, Sci. Adv., 1, 10.1126/sciadv.1500052
Hawkins, 2011, Global angiosperm family richness revisited: linking ecology and evolution to climate, J. Biogeogr., 38, 1253, 10.1111/j.1365-2699.2011.02490.x
He, 2008, Forest change of China in recent 300 years, J. Geogr. Sci., 18, 59, 10.1007/s11442-008-0059-8
Huang, 2011, Features and distribution patterns of Chinese endemic seed plant species, J. Syst. Evol., 49, 81, 10.1111/j.1759-6831.2011.00119.x
Humphreys, 2019, Global dataset shows geography and life form predict modern plant extinction and rediscovery, Nat. Ecol. Evol., 3, 1043, 10.1038/s41559-019-0906-2
Jin, 2019, V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants, Ecography, 42, 1353, 10.1111/ecog.04434
Johnson, 2002, Phylogeny and the selectivity of extinction in Australian marsupials, Anim. Conserv., 5, 135, 10.1017/S1367943002002196
Klimes, 2022, The ecological drivers of growth form evolution in flowering plants, J. Ecol., 110, 1525, 10.1111/1365-2745.13888
Lanfear, 2013, Taller plants have lower rates of molecular evolution, Nat. Commun., 4, 10.1038/ncomms2836
Laurance, 2000, Rainforest fragmentation kills big trees, Nature, 404, 836, 10.1038/35009032
Leão, 2014, Predicting extinction risk of Brazilian Atlantic forest angiosperms, Conserv. Biol., 28, 1349, 10.1111/cobi.12286
Leão, 2020, Evolutionary patterns in the geographic range size of Atlantic forest plants, Ecography, 43, 1, 10.1111/ecog.05160
Li, 2020, Phyr: an R package for phylogenetic species-distribution modelling in ecological communities, Methods Ecol. Evol., 11, 1455, 10.1111/2041-210X.13471
Liu, 2019, Forest fragmentation in China and its effect on biodiversity, Biol. Rev., 94, 1636, 10.1111/brv.12519
Lozano, 2005, Patterns of rarity and taxonomic group size in plants, Biol. Conserv., 126, 146, 10.1016/j.biocon.2005.04.024
Lu, 2018, Evolutionary history of the angiosperm flora of China, Nature, 554, 234, 10.1038/nature25485
Lu, 2017, Estimating regional species richness: the case of China’s vascular plant species, Glob. Ecol. Biogeogr., 26, 835, 10.1111/geb.12589
Mao, 2020, The geographic and climatic distribution of plant height diversity for 19000 angiosperms in China, Biodivers. Conserv., 29, 487, 10.1007/s10531-019-01895-5
Mckinney, 1997, Extinction vulnerability and selectivity: combining ecological and paleontological views, Annu. Rev. Ecol. Syst., 28, 495, 10.1146/annurev.ecolsys.28.1.495
Morueta-Holme, 2015, Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt, Proc. Natl. Acad. Sci. USA, 112, 12741, 10.1073/pnas.1509938112
Nic Lughadha E., Canteiro C., Bachman S., Baines D., Gardiner L.M., Meagher T.R., et al. 2017. Extinction risk and threats to plants. In: Willis KJ, ed. State of the world’s plants 2017. Kew, London, UK: Royal Botanic Gardens, 72–77.
Nic Lughadha, 2020, Extinction risk and threats to plants and fungi, Plants, People, Planet, 2, 389, 10.1002/ppp3.10146
Nosil, 2005, Testing hypotheses about ecological specialization using phylogenetic trees, Evolution, 59, 2256
Pagel, 1999, Inferring the historical patterns of biological evolution, Nature, 401, 877, 10.1038/44766
Pimm, 1988, On the risk of extinction, Am. Nat., 132, 757, 10.1086/284889
Purvis, 2000, Nonrandom extinction and the loss of evolutionary history, Science, 288, 328, 10.1126/science.288.5464.328
Purvis, 2000, Predicting extinction risk in declining species, Proc. R. Soc. Lond. – Ser. B: Biol. Sci., 267, 1947, 10.1098/rspb.2000.1234
Qin, 2017, Threatened species list of China’s higher plants, Biodivers. Sci., 25, 696, 10.17520/biods.2017144
Redding, 2010, Evolutionary distinctiveness, threat status, and ecological oddity in primates, Conserv. Biol., 24, 1052, 10.1111/j.1523-1739.2010.01532.x
Saar, 2012, Which plant traits predict species loss in calcareous grasslands with extinction debt?, Divers.Distribut., 18, 808, 10.1111/j.1472-4642.2012.00885.x
Schwartz, 2001, Taxon size predicts rates of rarity in vascular plants, Ecol. Lett., 4, 464, 10.1046/j.1461-0248.2001.00241.x
Smith, 1994
Smith, 2009, Life history influences rates of climatic niche evolution in flowering plants, Proc. R. Soc. B: Biol. Sci., 276, 4345, 10.1098/rspb.2009.1176
Smith, 2008, Rates of molecular evolution are linked to life history in flowering plants, Science, 322, 86, 10.1126/science.1163197
Stanley, 1979
Tabarelli, 2004, Forest fragmentation, synergisms and the impoverishment of neotropical forests, Biodivers. Conserv., 13, 1419, 10.1023/B:BIOC.0000019398.36045.1b
Tanentzap, 2020, Does evolutionary history correlate with contemporary extinction risk by influencing range size dynamics?, Am. Nat., 195, 569, 10.1086/707207
Thorne, 1999, Eastern Asia as a living museum for archaic angiosperms and other seed plants, Taiwania, 44, 413
Tonini, 2016, Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status, Biol. Conserv., 204, 23, 10.1016/j.biocon.2016.03.039
Vamosi, 2008, Nonrandom extinction leads to elevated loss of angiosperm evolutionary history, Ecol. Lett., 11, 1047, 10.1111/j.1461-0248.2008.01215.x
Vane-Wright, 1991, What to protect? Systematics and the agony of choice, Biol. Conserv., 55, 235, 10.1016/0006-3207(91)90030-D
Verde Arregoitia, 2013, Phylogenetic correlates of extinction risk in mammals: species in older lineages are not at greater risk, Proc. R. Soc. B: Biol. Sci., 280, 10.1098/rspb.2013.1092
Warren, 2008, Genome analysis of the Platypus reveals unique signatures of evolution, Nature, 453, 175, 10.1038/nature06936
Willis, 1922
Wu Z., Raven P.H., Hong D. (Eds.). 1994–2013. Flora of China, vols. 1–25. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Wu, 2011
Xu, 2018, Plant geographical range size and climate stability in China: growth form matters, Glob. Ecol. Biogeogr., 27, 506, 10.1111/geb.12710