Ảnh hưởng của các tác nhân gây rối loạn nội tiết đến sự phát triển tinh hoàn thai nhi, tuổi dậy thì ở nam giới và tuổi chuyển tiếp
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. Hauser, N.E. Skakkebaek, U. Hass et al., Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J. Clin. Endocrinol. Metab. 100(4), 1267–1277 (2015). https://doi.org/10.1210/jc.2014-4325
S. Sifakis, V.P. Androutsopoulos, A.M. Tsatsakis, D.A. Spandidos, Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 51, 56–70 (2017). https://doi.org/10.1016/j.etap.2017.02.024
A. Soubry, J.M. Schildkraut, A. Murtha et al., Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med. 11, 29 (2013). https://doi.org/10.1186/1741-7015-11-29
A. Soubry, S.K. Murphy, F. Wang et al., Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int. J. Obes. 39(4), 650–657 (2015). https://doi.org/10.1038/ijo.2013.193
I. Katsikantami, S. Sifakis, M.N. Tzatzarakis et al., A global assessment of phthalates burden and related links to health effects. Environ. Int. 97, 212–236 (2016). https://doi.org/10.1016/j.envint.2016.09.013
M.F. Sweeney, N. Hasan, A.M. Soto, C. Sonnenschein, Environmental endocrine disruptors: effects on the human male reproductive system. Rev. Endocr. Metab. Disord. 16(4), 341–357 (2015). https://doi.org/10.1007/s11154-016-9337-4
N.E. Skakkebaek, E. Rajpert-De Meyts, G.M. Buck Louis et al., Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol. Rev. 96(1), 55–97 (2016). https://doi.org/10.1152/physrev.00017.2015
M.H. Hsieh, B.N. Breyer, M.L. Eisenberg, L.S. Baskin, Associations among hypospadias, cryptorchidism, anogenital distance, and endocrine disruption. Curr. Urol. Rep. 9(2), 137–142 (2008). https://doi.org/10.1007/s11934-008-0025-0
M.H. Hsieh, M.L. Eisenberg, A.B. Hittelman, J.M. Wilson, G.E. Tasian, L.S. Baskin, Caucasian male infants and boys with hypospadias exhibit reduced anogenital distance. Hum. Reprod. 27(6), 1577–1580 (2012). https://doi.org/10.1093/humrep/des087
V.G. Jain, A.K. Singal, Shorter anogenital distance correlates with undescended testis: a detailed genital anthropometric analysis in human newborns. Hum. Reprod. 28(9), 2343–2349 (2013). https://doi.org/10.1093/humrep/det286
A. Thankamony et al., Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ. Health Perspect. 122(2), 207–211 (2014)
M.L. Eisenberg, M.H. Hsieh, R.C. Walters, R. Krasnow, L.I. Lipshultz, The relationship between anogenital distance, fatherhood, and fertility in adult men. PLoS ONE 6(5), e18973 (2011). https://doi.org/10.1371/journal.pone.0018973.
M.L. Eisenberg, L.I. Lipshultz, Anogenital distance as a measure of human male fertility. J. Assist. Reprod. Genet. 32(3), 479–484 (2015). https://doi.org/10.1007/s10815-014-0410-1
J. Mendiola, M. Melgarejo, M. Moñino-García, A. Cutillas-Tolín, J.A. Noguera-Velasco, A.M. Torres-Cantero, Is anogenital distance associated with semen quality in male partners of subfertile couples? Andrology 3(4), 672–676 (2015). https://doi.org/10.1111/andr.12059
J.J. Arnett, Emerging adulthood. A theory of development from the late teens through the twenties. Am. Psychol. 55(5), 469–480 (2000)
A. Colver, S. Longwell, New understanding of adolescent brain development: relevance to transitional healthcare for young people with long term conditions. Arch. Dis. Child. 98(11), 902–907 (2013)
K.R. Kilcoyne, R.T. Mitchell, Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum. Reprod. Update 25(4), 397–421 (2019)
V. Rouiller-Fabre, R. Habert, G. Livera, Effects of endocrine disruptors on the human fetal testis. Ann. Endocrinol. 75, 54–57 (2014)
B. Lu, C.E. Bishop, Late onset of spermatogenesis and gain of fertility inPOG-deficient mice indicate that POG is not necessary for the proliferation of spermatogonia. Biol. Reprod. 69, 161–168 (2003)
V. Rouiller-Fabre, R. Lambrot, V. Muczynski, H. Coffigny, C. Lécureuil, C. Pairault et al., Development and regulations of testicular functions in the human foetus. Gynecol. Obstet. Fertil. 36(9), 898–907 (2008)
A.M. Heeren, L. van Iperen, D.B. Klootwijk, A. de Melo Bernardo, M.S. Roost, M.M. Gomes Fernandes, L.A. Louwe, C.G. Hilders, F.M. Helmerhorst, L.A. van der Westerlaken et al., Development of the follicular basement membrane during human gam-etogenesis and early folliculogenesis. BMC Dev. Biol. 15, 4 (2015)
M.J. Bitgood, L. Shen, A.P. McMahon, Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6, 298–304 (1996)
I.A. Hughes, C.L. Acerini, Factors controlling testis descent. Eur. J. Endocrinol. 159, S75–S82 (2008)
S. van den Driesche, K.R. Kilcoyne, I. Wagner, D. Rebourcet, A. Boyle, R. Mitchell, C. McKinnell, S. Macpherson, R. Donat, C.J. Shukla et al., Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI Insight 2, e91204 (2017)
R. Habert, G. Livera, V. Rouiller-Fabre, Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin. Androl. 24, 14 (2014)
A. Lehraiki, C. Racine, A. Krust, R. Habert, C. Levacher, Phthalates impair germ cell number in the mouse fetal testis by an androgen- and estrogen-independent mechanism. Toxicol. Sci. 111(2), 372–382 (2009)
K.W. Gaido, J.B. Hensley, D. Liu, D.G. Wallace, S. Borghoff, K.J. Johnson, S.J. Hall, K. Boekelheide, Fetal mouse phthalate exposure shows that gonocyte multinucleation is not associated with decreased testicular testosterone. Toxicol. Sci. 97(2), 491–503 (2007)
N.E. Heger, S.J. Hall, M.A. Sandrof, E.V. McDonnell, J.B. Hensley, E.N. McDowell et al., Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. Environ. Health Perspect. 120(8), 1137–1143 (2012)
R. Lambrot, V. Muczynski, C. Lécureuil, G. Angenard, H. Coffigny, C. Pairault et al., Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. Environ. Health Perspect. 117, 32–37 (2009)
R.T. Mitchell, A.J. Childs, R.A. Anderson, S. van den Driesche, P.T. Saunders, C. McKinnell et al., Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J. Clin. Endocrinol. Metab. 97(3), E341–E348 (2012)
O. Albert, B. Jegou, A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum. Reprod. Update 20, 231–249 (2014)
D.J. Spade, S.J. Hall, S. Wilson, K. Boekelheide, Di-n-Butyl phthalate induces multinucleated germ cells in the rat fetal testis through a nonproliferative mechanism. Biol. Reprod. 93(5), 110 (2015). https://doi.org/10.1095/biolreprod.115.131615
S. Eladak, D. Moison, M.J. Guerquin, G. Matilionyte, K. Kilcoyne, T. N’Tumba-Byn, S. Messiaen, Y. Deceuninck, S. Pozzi-Gaudin, A. Benachi et al., Effects of environmental bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis. PLoS ONE 13, e0191934 (2018)
T. N’Tumba-Byn, D. Moison, M. Lacroix, C. Lecureuil, L. Lesage, S.M. Prud’homme et al. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal Leydig cell function. PLoS ONE 7(12), e51579 (2012)
M.D. Komarowska, A. Hermanowicz, U. Czyzewska, R. Milewski, E. Matuszczak, W. Miltyk, W. Debek, Serum bisphenol A level in boys with cryptorchidism: a step to male infertility? Int. J. Endocrinol. 2015, 973154 (2015)
C. Chevrier, C. Petit, C. Philippat, M. Mortamais, R. Slama, F. Rouget, A.M. Calafat, X. Ye, M.J. Silva, M.A. Charles et al., Maternal urinary phthalates and phenols and male genital anomalies. Epidemiology 23, 353–356 (2012)
J.G. Teeguarden, N.C. Twaddle, M.I. Churchwell, D.R. Doerge, Urine and serum biomonitoring of exposure to environmental estrogens I: bisphenol A in pregnant women. Food Chem. Toxicol. 92, 129–142 (2016)
J. Toppari, J.C. Larsen, P. Christiansen, A. Giwercman, P. Grandjean, L.J. Guillette Jr et al., Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 104(Suppl. 4), 741–803 (1996)
E. Sugantha Priya, T. Sathish Kumar, S. Balaji, S. Bavithra, P. Raja Singh, D. Sakthivel, B. Ravi Sankar, J. Arunakaran, Lactational exposure effect of polychlorinated biphenyl on rat Sertoli cell markers and functional regulators in prepuberal and puberal F1 offspring. J. Endocrinol. Investig. 40(1), 91–100 (2017)
A. Eggert, S. Cisneros-Montalvo, S. Anandan, S. Musilli, J.B. Stukenborg, A. Adamsson, M. Nurmio, J. Toppari, The effects of perfluorooctanoic acid (PFOA) on fetal and adult rat testis. Reprod. Toxicol. 90, 68–76 (2019)
H. Lu, H. Zhang, J. Gao, Z. Li, S. Bao, X. Chen, Y. Wang, R. Ge, L. Ye, Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. Environ. Pollut. 250, 206–215 (2019)
B. Mao, D. Mruk, Q. Lian, R. Ge, C. Li, B. Silvestrini, C.Y. Cheng, Mechanistic insights into PFOS-mediated sertoli cell injury. Trends Mol. Med. 24(9), 781–793 (2018)
Y. Gao, H. Chen, X. Xiao, W.Y. Lui, W.M. Lee, D.D. Mruk, C.Y. Cheng, Perfluorooctanesulfonate (PFOS)-induced Sertoli cell injury through a disruption of F-actin and microtubule organization is mediated by Akt1/2. Sci. Rep. 7(1), 1110 (2017). https://doi.org/10.1038/s41598-017-01016-8
L. Li, X. Li, X. Chen et al., Perfluorooctane sulfonate impairs rat Leydig cell development during puberty. Chemosphere 190, 43–53 (2018)
G. Toft, B.A. Jönsson, J.P. Bonde, B. Nørgaard-Pedersen, D.M. Hougaard, A. Cohen, C.H. Lindh, R. Ivell, R. Anand-Ivell, M.S. Lindhard, Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal leydig cell function, and cryptorchidism and hypospadias in danish boys (1980-1996). Environ. Health Perspect. 124(1), 151–156 (2016)
A. Sansone, S. Kliesch, A.M. Isidori, S.A.M.H. Schlatt, and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 7(2), 131–138 (2019). https://doi.org/10.1111/andr.12597
W.A. Marshall, J.M. Tanner, Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 44, 291–303 (1969)
W.A. Marshall, J.M. Tanner, Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 45, 13–23 (1970)
E. Den Hond, H.A. Roels, K. Hoppenbrouwers et al., Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ. Health Perspect. 110(8), 771–776 (2002)
H. Saiyed, A. Dewan, V. Bhatnagar et al., Effect of endosulfan on male reproductive development. Environ. Health Perspect. 111(16), 1958–1962 (2003). https://doi.org/10.1289/ehp.6271
M.M. Leijs, J.G. Koppe, K. Olie, W.M. van Aalderen, P. Voogt, T. Vulsma, M. Westra, G.W. ten Tusscher, Delayed initiation of breast development in girls with higher prenatal dioxin exposure; a longitudinal cohort study. Chemosphere 73, 999–1004 (2008)
K.K. Ferguson, K.E. Peterson, J.M. Lee, A. Mercado-García, C.B. Goldenberg, M.M. Téllez-Rojo, J.D. Meeker, Prenatal and peripubertal phthalates and bisphenol-A in relation to sex hormones and puberty in boys. Reprod. Toxicol. 47, 70–76 (2014).
D.J. Watkins, B.N. Sánchez, M.M. Téllez-Rojo et al., Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ. Health 16, 69 (2017). https://doi.org/10.1186/s12940-017-0278-5
O. Sergeyev, J.S. Burns, P.L. Williams, S.A. Korrick, M.M. Lee, B. Revich, R. Hauser, The association of peripubertal serum concentrations of organochlorine chemicals and blood lead with growth and pubertal development in a longitudinal cohort of boys: a review of published results from the Russian Children’s Study. Environ. Health. 32(1–2), 83–92 (2017)
C.L. Schwartz, S. Christiansen, A.M. Vinggaard, M. Axelstad, U. Hass, T. Svingen, Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch. Toxicol. 93(2), 253–272 (2019).
A. Dean, R.M. Sharpe, Clinical review: anogenital distance or digit length ratio as measures of fetal androgen exposure: relationship to male reproductive development and its disorders. J. Clin. Endocrinol. Metab. 98(6), 2230–2238 (2013)
A. Thankamony, V. Pasterski, K.K. Ong, C.L. Acerini, I.A. Hughes, Anogenital distance as a marker of androgen exposure in humans. Andrology 4(4), 616–625 (2016). https://doi.org/10.1111/andr.12156
C.L. Acerini, I.A. Hughes, Endocrine disrupting chemicals: a new and emerging public health problem? Arch. Dis. Child. 91(8), 633–641 (2006). https://doi.org/10.1136/adc.2005.088500
E. Diamanti-Kandarakis, E. Palioura, S.A. Kandarakis, M. Koutsilieris, The impact of endocrine disruptors on endocrine targets. Horm. Metab. Res. 42(8), 543–552 (2010). https://doi.org/10.1055/s-0030-1252034
J.A. Taylor, C.A. Richter, R.L. Ruhlen, F.S. vom Saal, Estrogenic environmental chemicals and drugs: mechanisms for effects on the developing male urogenital system. J. Steroid Biochem. Mol. Biol. 127(1–2), 83–95 (2011). https://doi.org/10.1016/j.jsbmb.2011.07.005
H.M. Scott, G.R. Hutchison, M.S. Jobling, C. McKinnell, A.J. Drake, R.M. Sharpe, Relationship between androgen action in the “male programming window,” fetal sertoli cell number, and adult testis size in the rat. Endocrinology. 149(10), 5280–5287 (2008). https://doi.org/10.1210/en.2008-0413
E. Salazar-Martinez, P. Romano-Riquer, E. Yanez-Marquez, M.P. Longnecker, M. Hernandez-Avila, Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environ. Health 3(1), 8 (2004). https://doi.org/10.1186/1476-069X-3-8
A. Thankamony, K.K. Ong, D.B. Dunger, C.L. Acerini, I.A. Hughes, Anogenital distance from birth to 2 years: a population study. Environ. Health Perspect. 117(11), 1786–1790 (2009). https://doi.org/10.1289/ehp.0900881
T. Ma, X. Yin, R. Han, J. Ding, H. Zhang, X. Han, D. Li, Effects of In utero exposure to di-n-butyl phthalate on testicular development in rat. Int. J. Environ. Res. Public Health 14(10), E1284 (2017). https://doi.org/10.3390/ijerph14101284
S. Moody, H. Goh, A. Bielanowicz, P. Rippon, K.L. Loveland, C. Itman, Prepubertal mouse testis growth and maturation and androgen production are acutely sensitive to di-n-butyl phthalate. Endocrinology 154(9), 3460–3475 (2013). https://doi.org/10.1210/en.2012-2227
S. Christiansen, M. Scholze, M. Axelstad, J. Boberg, A. Kortenkamp, U. Hass, Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. Int. J. Androl. 31, 241–248 (2008). https://doi.org/10.1111/j.1365-2605.2008.00866.x
U. Hass, M. Scholze, S. Christiansen et al., Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. Environ. Health Perspect. 115(Suppl. 1), 122–128 (2007). https://doi.org/10.1289/ehp.9360
J. Ostby, W.R. Kelce, C. Lambright, C.J. Wolf, P. Mann, L.E. Gray Jr., The fungicide procymidone alters sexual differentiation in the male rat by acting as an androgen-receptor antagonist in vivo and in vitro. Toxicol. Ind. Health 15(1–2), 80–93 (1999). https://doi.org/10.1177/074823379901500108
L.G. Parks, J.S. Ostby, C.R. Lambright et al., The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci. 58(2), 339–349 (2000). https://doi.org/10.1093/toxsci/58.2.339
S.M. Patrick, M.S. Bornman, A.M. Joubert, N. Pitts, V. Naidoo, C. de Jager, Effects of environmental endocrine disruptors, including insecticides used for malaria vector control on reproductive parameters of male rats. Reprod. Toxicol. 61, 19–27 (2016). https://doi.org/10.1016/j.reprotox.2016.02.015
C.J. Bowman, N.J. Barlow, K.J. Turner, D.G. Wallace, P.M. Foster, Effects of in utero exposure to finasteride on androgen-dependent reproductive development in the male rat. Toxicol. Sci. 74(2), 393–406 (2003). https://doi.org/10.1093/toxsci/kfg128
M. Welsh, P.T. Saunders, M. Fisken, H.M. Scott, G.R. Hutchison, L.B. Smith, R.M. Sharpe, Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J. Clin. Investig. 118(4), 1479–1490 (2008)
M. Welsh, D.J. MacLeod, M. Walker, L.B. Smith, R.M. Sharpe, Critical androgen-sensitive periods of rat penis and clitoris development. Int. J. Androl. 33(1), e144–e152 (2010). https://doi.org/10.1111/j.1365-2605.2009.00978.x
J. Boberg, M. Axelstad, T. Svingen, K. Mandrup, S. Christiansen, A.M. Vinggaard, U. Hass, Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben. Toxicol. Sci. 152(1), 244–256 (2016). https://doi.org/10.1093/toxsci/kfw079
L. Zhang, L. Dong, S. Ding, P. Qiao, C. Wang, M. Zhang, L. Zhang, Q. Du, Y. Li, N. Tang, B. Chang, Effects of n-butylparaben on steroidogenesis and spermatogenesis through changed E2 levels in male rat offspring. Environ. Toxicol. Pharmacol. 37(2), 705–717 (2014)
S. Christiansen, M. Axelstad, J. Boberg, A.M. Vinggaard, G.A. Pedersen, U. Hass, Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction 147(4), 477–487 (2014). https://doi.org/10.1530/REP-13-0377
C. Taxvig, A.M. Vinggaard, U. Hass, M. Axelstad, J. Boberg, P.R. Hansen et al., Do parabens have the ability to interfere with steroidogenesis? Toxicol. Sci. 106, 206–213 (2008). https://doi.org/10.1093/toxsci/kfn148
E. Spörndly-Nees, J. Boberg, E. Ekstedt, L. Holm, A. Fakhrzadeh, L. Dunder, M.M. Kushnir, M.H. Lejonklou, P.M. Lind, Low-dose exposure to bisphenol A during development has limited effects on male reproduction in midpubertal and aging Fischer 344 rats. Reprod. Toxicol. 81, 196–206 (2018). https://doi.org/10.1016/j.reprotox.2018.08.007
S.A. Ferguson, C.D.J. Law, J.S. Abshire, Developmental treatment with bisphenol A or ethinyl estradiol causes few alterations on early preweaning measures. Toxicol. Sci. 124(1), 149–160 (2011)
K.L. Howdeshell, J. Furr, C.R. Lambright, V.S. Wilson, B.C. Ryan, L.E. Gray Jr., Gestational and lactational exposure to ethinyl estradiol, but not bisphenol A, decreases androgen-dependent reproductive organ weights and epididymal sperm abundance in the male long evans hooded rat. Toxicol. Sci. 102(2), 371–382 (2008)
H. Takagi, M. Shibutani, N. Masutomi, C. Uneyama, N. Takahashi, K. Mitsumori, M. Hirose, Lack of maternal dietary exposure effects of bisphenol A and nonylphenol during the critical period for brain sexual differentiation on the reproductive/endocrine systems in later life. Arch. Toxicol. 78(2), 97–105 (2004)
H. Tinwell, J. Haseman, P.A. Lefevre, N. Wallis, J. Ashby, Normal sexual development of two strains of rat exposed in utero to low doses of bisphenol A. Toxicol. Sci. 68, 339–348 (2002)
S.K. Thangavelu, S.P. Elaiyapillai, I. Ramachandran, R.S. Bhaskaran, A. Jagadeesan, Lactational exposure of polychlorinated biphenyls impair Leydig cellular steroidogenesis in F(1) progeny rats. Reprod. Toxicol. 75, 73–85 (2018). https://doi.org/10.1016/j.reprotox.2017.11.009
C.G. Bornehag, F. Carlstedt, B.A. Jönsson, C.H. Lindh, T.K. Jensen, A. Bodin, C. Jonsson, S. Janson, S.H. Swan, Prenatal phthalate exposures and anogenital distance in Swedish boys. Environ. Health Perspect. 123(1), 101–107 (2015). https://doi.org/10.1289/ehp.1408163
L.P. Bustamante-Montes, M.A. Hernández-Valero, D. Flores-Pimentel et al., Prenatal exposure to phthalates is associated with decreased anogenital distance and penile size in male newborns. J. Dev. Orig. Health Dis. 4(4), 300–306 (2013). https://doi.org/10.1017/S2040174413000172
Y. Suzuki, J. Yoshinaga, Y. Mizumoto, S. Serizawa, H. Shiraishi, Foetal exposure to phthalate esters and anogenital distance in male newborns. Int. J. Androl. 35(3), 236–244 (2012). https://doi.org/10.1111/j.1365-2605.2011.01190.x
S.H. Swan, K.M. Main, F. Liu, S.L. Stewart, R.L. Kruse, A.M. Calafat, C.S. Mao, J.B. Redmon, C.L. Ternand, S. Sullivan, J.L. Teague, Study for Future Families Research Team, Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ. Health Perspect. 113(8), 1056–1061 (2005).
S.H. Swan, S. Sathyanarayana, E.S. Barrett et al., First trimester phthalate exposure and anogenital distance in newborns. Hum. Reprod. 30(4), 963–972 (2015). https://doi.org/10.1093/humrep/deu363
A. Di Nisio, I. Sabovic, U. Valente, S. Tescari, M.S. Rocca, D. Guidolin, S. Dall’Acqua, L. Acquasaliente, N. Pozzi, M. Plebani, A. Garolla, C. Foresta, Endocrine disruption of androgenic activity by perfluoroalkyl substances: clinical and experimental evidence. J. Clin. Endocrinol. Metab. 2018. https://doi.org/10.1210/jc.2018-01855
M. Vafeiadi, S. Agramunt, E. Papadopoulou, H. Besselink, K. Mathianaki, P. Karakosta, A. Spanaki, A. Koutis, L. Chatzi, M. Vrijheid, M. Kogevinas, In utero exposure to dioxins and dioxin-like compounds and anogenital distance in newborns and infants. Environ. Health Perspect. 121(1), 125–130 (2013). https://doi.org/10.1289/ehp.1205221
E. Mammadov, M. Uncu, C. Dalkan, High prenatal exposure to bisphenol A reduces anogenital distance in healthy male newborns. J. Clin. Res. Pediatr. Endocrinol. 10(1), 25–29 (2018). https://doi.org/10.4274/jcrpe.4817
M. Miao, W. Yuan, Y. He, Z. Zhou, J. Wang, E. Gao, G. Li, D.K. Li, In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res. A Clin. Mol. Teratol. 91(10), 867–872 (2011). https://doi.org/10.1002/bdra.22845
L. Torres-Sanchez, M. Zepeda, M.E. Cebrián, J. Belkind-Gerson, R.M. Garcia-Hernandez, U. Belkind-Valdovinos, L. López-Carrillo, Dichlorodiphenyldichloroethylene exposure during the first trimester of pregnancy alters the anal position in male infants. Ann. N. Y. Acad. Sci. 1140, 155–162 (2008). https://doi.org/10.1196/annals.1454.004
T.K. Jensen, H. Frederiksen, H.B. Kyhl et al., Prenatal exposure to phthalates and anogenital distance in male infants from a low-exposed Danish cohort (2010-2012). Environ. Health Perspect. 124(7), 1107–1113 (2016). https://doi.org/10.1289/ehp.1509870
P.C. Huang, P.L. Kuo, Y.Y. Chou, S.J. Lin, C.C. Lee, Association between prenatal exposure to phthalates and the health of newborns. Environ. Int. 35(1), 14–20 (2009)
M.S. Bornman, J. Chevrier, S. Rauch et al., Dichlorodiphenyltrichloroethane exposure and anogenital distance in the Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) birth cohort study, South Africa. Andrology 4(4), 608–615 (2016). https://doi.org/10.1111/andr.12235
T.H. Lassen, H. Frederiksen, H.B. Kyhl, S.H. Swan, K.M. Main, A.M. Andersson, D.V. Lind, S. Husby, C. Wohlfahrt-Veje, N.E. Skakkebæk, T.K. Jensen, Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ. Health Perspect. 124(8), 1261–1268 (2016). https://doi.org/10.1289/ehp.1409637
D.V. Lind, L. Priskorn, T.H. Lassen, F. Nielsen, H.B. Kyhl, D.M. Kristensen, H.T. Christesen, J.S. Jorgensen, P. Grandjean, T.K. Jensen, Prenatal exposure to perfluoroalkyl substances and anogenital distance at 3 months of age in a Danish mother-child cohort. Reprod. Toxicol. 68, 200–206 (2017). https://doi.org/10.1016/j.reprotox.2016.08.019
L. Dalsager, L.E. Christensen, M.G. Kongsholm et al., Associations of maternal exposure to organophosphate and pyrethroid insecticides and the herbicide 2,4-D with birth outcomes and anogenital distance at 3 months in the Odense child cohort. Reprod. Toxicol. 76, 53–62 (2018). https://doi.org/10.1016/j.reprotox.2017.12.008
K. Marsee, T.J. Woodruff, D.A. Axelrad, A.M. Calafat, S.H. Swan, Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance [published correction appears in Environ Health Perspect. 2007 Feb;115(2):A73]. Environ. Health Perspect. 114(6), 805–809 (2006). https://doi.org/10.1289/ehp.8663
T.E. Arbuckle, A. Agarwal, S.H. MacPherson, W.D. Fraser, S. Sathyanarayana, T. Ramsay, L. Dodds, G. Muckle, M. Fisher, W. Foster, M. Walker, P. Monnier, Prenatal exposure to phthalates and phenols and infant endocrine-sensitive outcomes: The MIREC study. Environ. Int. 120, 572–583 (2018). https://doi.org/10.1016/j.envint.2018.08.034
C. Cremonese, C. Piccoli, F. Pasqualotto, R. Clapauch, R.J. Koifman, S. Koifman, C. Freire, Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod. Toxicol. 67, 174–185 (2017). https://doi.org/10.1016/j.reprotox.2017.01.001
J. Stubleski, S. Salihovic, P.M. Lind, L. Lind, L. Dunder, P. McCleaf et al., The effect of drinking water contaminated with perfluoroalkyl substances on a 10-year longitudinal trend of plasma levels in an elderly uppsala cohort. Environ. Res. 159, 95–10 (2017)
Y.L. Guo, G.H. Lambert, C.C. Hsu et al., Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int. Arch. Occupat. Environ. Health 77(3), 153–158 (2004)
A. Vested, C.H. Ramlau-Hansen, S.F. Olsen et al., Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ. Health Perspect. 121(4), 453–458 (2013). https://doi.org/10.1289/ehp.1205118
J. Axelsson, L. Rylander, A. Rignell-Hydbom, C.H. Lindh, B.A. Jonsson, A. Giwercman, Prenatal phthalate exposure and reproductive function in young men. Environ. Res. 138C, 264–270 (2015)
E. Durmaz, E.N. Ozmert, P. Erkekoglu, B. Giray, O. Derman, F. Hincal, K. Yurdakök, Plasma phthalate levels in pubertal gynecomastia. Pediatrics 125, 122–129 (2010)
N.M. Mol, N. Sorensen, P. Weihe et al., Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls. Eur. J. Endocrinol. 146(3), 357–363 (2002)
U.N. Joensen, B. Veyrand, J.P. Antignac, M. Blomberg Jensen, J.H. Petersen, P. Marchand, et al., PFOS (perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men. Hum. Reprod. 28(3), 599–608 (2013). https://doi.org/10.1093/humrep/des425
P. Grandjean, C. Grønlund, I.M. Kjær et al., Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls. Reprod. Toxicol. 34(4), 498–503 (2012). https://doi.org/10.1016/j.reprotox.2012.07.005
M. Nakai et al., Acute and long-term effects of a single dose of the fungicide carbendazim (Methyl 2-Benzimidazole Carbamate) on the male reproductive system in the rat. J. Androl. 13, 507–518 (1992)
A. Cardone, R. Comitato, F. Angelini, Spermatogenesis, epididymis morphology and plasma sex steroid secretion in the male lizard Podarcis sicula exposed to diuron. Environ, Res. 108, 214–223 (2008)
V. Barry, A. Winquist, K. Steenland, Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 121(11–12), 1313–1318 (2013). https://doi.org/10.1289/ehp.1306615
M. Benedetti, A. Zona, E. Beccaloni, M. Carere, P. Comba, Incidence of breast, prostate, testicular, and thyroid cancer in italian contaminated sites with presence of substances with endocrine disrupting properties. Int. J. Environ. Res. Public Health 14(4), 355 (2017). https://doi.org/10.3390/ijerph14040355
C.G. Ohlson, L. Hardell, Testicular cancer and occupational exposures with a focus on xenoestrogens in polyvinyl chloride plastics. Chemosphere 40, 1277–1282 (2000). https://doi.org/10.1016/S0045-6535(99)00380-X
M.P. Purdue, L.S. Engel, H. Langseth et al., Prediagnostic serum concentrations of organochlorine compounds and risk of testicular germ cell tumors. Environ. Health Perspect. 117(10), 1514–1519 (2009). https://doi.org/10.1289/ehp.0800359
V.M. Vieira, K. Hoffman, H.M. Shin, J.M. Weinberg, T.F. Webster, T. Fletcher, Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ. Health Perspect. 121(3), 318–323 (2013). https://doi.org/10.1289/ehp.1205829
L. Cheng, P. Albers, D.M. Berney, D.R. Feldman, G. Daugaard, T. Gilligan et al., Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018). https://doi.org/10.1038/s41572-018-0029-0
Monograph IARC Working Group, Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 14, 287–288 (2013)
S. Koifman, R.J. Koifman, A. Meyer, Human reproductive system disturbances and pesticide exposure in Brazil. Cad. Saude Publica 18, 435–445 (2002)
C. Le Cornet, B. Fervers, S.O. Dalton, M. Feychting, E. Pukkala, T. Tynes et al., Testicular germ cell tumours and parental occupational exposure to pesticides: a register-based case-control study in the Nordic countries (NORD-TEST study). Occup. Environ. Med. 72(11), 805–811 (2015). https://doi.org/10.1136/oemed-2015-102860
K.A. McGlynn, S.M. Quraishi, B.I. Graubard, J.P. Weber, M.V. Rubertone, R.L. Erickson, Persistent organochlorine pesticides and risk of testicular germ cell tumors. J. Natl. Cancer Inst. 100, 663–671 (2008)
K.A. McGlynn, S.M. Quraishi, B.I. Graubard, J.P. Weber, M.V. Rubertone, R.L. Erickson, Polychlorinated biphenyls and risk of testicular germ cell tumors. Cancer Res. 69(5), 1901–1909 (2009). https://doi.org/10.1158/0008-5472.CAN-08-3935
M.L. Biggs, M.D. Davis, D.L. Eaton et al., Serum organochlorine pesticide residues and risk of testicular germ cell carcinoma: a population-based case-control study. Cancer Epidemiol. Biomarkers Prev. 17(8), 2012–2018 (2008). https://doi.org/10.1158/1055-9965.EPI-08-0032
D. Paoli, F. Giannandrea, M. Gallo, R. Turci, M.S. Cattaruzza, F. Lombardo et al., Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk. J. Endocrinol. Investig. 38, 745–752 (2015). https://doi.org/10.1007/s40618-015-0251-5
L. Hardell, B. van Bavel, G. Lindström et al., Increased concentrations of polychlorinated biphenyls, hexachlorobenzene, and chlordanes in mothers of men with testicular cancer. Environ. Health Perspect. 111(7), 930–934 (2003). https://doi.org/10.1289/ehp.5816
L. Hardell, B. Van Bavel, G. Lindstrom, M. Carlberg, M. Eriksson, A.C. Dreifaldt et al., Concentrations of polychlorinated biphenyls in blood and the risk for testicular cancer. Int. J. Androl. 27, 282–290 (2004). https://doi.org/10.1111/j.1365-2605.2004.00489.x
A.J. Martino-Andrade, I. Chahoud, Reproductive toxicity of phthalate esters. Mol. Nutr. Food Res. 54(1), 148–157 (2010). https://doi.org/10.1002/mnfr.200800312
F. Pallotti, M. Pelloni, D. Gianfrilli, A. Lenzi, F. Lombardo, D. Paoli, Mechanisms of testicular disruption from exposure to bisphenol A and phtalates. J. Clin. Med. 9(2), 471 (2020). https://doi.org/10.3390/jcm9020471
R. Lauretta, A. Sansone, M. Sansone, F. Romanelli, M. Appetecchia, Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. 10, 178 (2019). https://doi.org/10.3389/fendo.2019.00178