Effects of electron–phonon coupling and Rashba spin–orbit interaction on thermodynamic and magnetic properties of quantum dots
Chinese Journal of Physics - 2023
Tài liệu tham khảo
Zhao, 2022, Colloidal quantum dot solar cells: Progressive deposition techniques and future prospects on large area fabrication, Adv. Mater., 34
Huynh, 2012, Hybrid nanorod-polymer solar cells, Science, 295, 2425, 10.1126/science.1069156
Courel, 2021, A proposal to enhance SnS solar cell efficiency: the incorporation of SnSSe nanostructures, J. Phys. D: Appl. Phys., 54, 10.1088/1361-6463/ac2110
Milliron, 2004, Colloidal nanocrystal heterostructures with linear and branched topology, Nature, 430, 190, 10.1038/nature02695
Rao, 2022, Preparation of artificial graphite coated with sodium alginate as a negative electrode material for lithium-ion battery study and its lithium storage properties, Mater. Adv., 3, 8958, 10.1039/D2MA00820C
Kazes, 2002, Lasing from semiconductor quantum rods in a cylindrical microcavity, Adv. Mater., 14, 317, 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U
Wang, 2015, All inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics, Adv. Mater., 27, 7101, 10.1002/adma.201503573
Wang, 2017, Perovskite based photodetectors: materials and devices, Chem. Soc. Rev., 46, 5204, 10.1039/C6CS00896H
Nautiyal, 2018, Second harmonic generation in a disk shaped quantum dot in the presence of spin–orbit interaction, Phys. Lett. A, 382, 2061, 10.1016/j.physleta.2018.05.017
Konig, 2007, Quantum spin hall insulator state in HgTe quantum wells, Science, 318, 766, 10.1126/science.1148047
Sinova, 2004, Universal intrinsic spin Hall effect, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.126603
Kria, 2022, Rashba effect on linear and nonlinear optical properties of a cylindrical core/shell heterojunction quantum dot, J. Front. Phys., 10
Kumar, 2016, Magnetization and susceptibility of a parabolic InAs quantum dot with electron electron and spin orbit interactions in the presence of a magnetic field at finite temperature, J. Magn. Magn. Mater., 418, 169, 10.1016/j.jmmm.2016.02.071
Malik, 2020, Role of spin–orbit interactions on the entropy and heat capacity of a quantum dot helium placed in an external magnetic field, Physica E, 121, 10.1016/j.physe.2020.114097
Khordad, 2018, Simultaneous effects of electron–electron interactions, Rashba spin–orbit interaction and magnetic field on susceptibility of quantum dots, J. Magn. Magn. Mater., 449, 510, 10.1016/j.jmmm.2017.10.085
Khordad, 2019, Magnetic properties in three electrons under Rashba spin orbit interaction and magnetic field, Int. J. Quantum Chem., 119, 10.1002/qua.25994
Khoshbakht, 2021, Magnetic and thermodynamic properties of a nanowire with Rashba spin orbit interaction, J. Low Temp. Phys., 202, 59, 10.1007/s10909-020-02522-2
Nautiyal, 2021, Spin orbit effect in a quantum dot confined in a Kratzer potential, J. Magn. Magn. Mater., 528, 10.1016/j.jmmm.2020.167688
Lakaal, 2022, Polaronic corrections on magnetization and thermodynamic properties of electron electron in 2D systems with rashba spin orbit coupling, J. Magn. Magn. Mater., 551, 10.1016/j.jmmm.2022.169042
Lee, 1999, Low-lying energy spectrum of a magnetopolaron bound to a Coulomb impurity in a quantum dot, Solid State Commun., 112, 555, 10.1016/S0038-1098(99)00398-1
Lee, 2000, Polaron effect on energy spectrum in two-electron quantum dot under magnetic field, Solid State Commun., 116, 51, 10.1016/S0038-1098(00)00279-9
Hassanabadi, 2011, [Html] Rashba coupling in three electron-quantum dot under cylindrical symmetry: An exact solution, Ann. Physics, 326, 2957, 10.1016/j.aop.2011.07.011
Lee, 2000, Polaron effect on the low-lying states of a three electron quantum dot in a magnetic field, Phys. Rev. B, 62, 4661, 10.1103/PhysRevB.62.4661
Ohno, 1998, Making nonmagnetic semiconductors ferromagnetic, Science, 281, 951, 10.1126/science.281.5379.951
Flederling, 1999, Injection and detection of a spin-polarized current in a light emitting diode, Nature, 402, 787, 10.1038/45502
Ohno, 1999, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature, 402, 790, 10.1038/45509
Ohno, 1999, Properties of ferromagnetic III V semiconductors, J. Magn. Magn. Mater., 200, 110, 10.1016/S0304-8853(99)00444-8
Dietl, 2000, Zener model description of ferromagnetism in zinc blende magnetic semiconductors, Science, 287, 1019, 10.1126/science.287.5455.1019
DiVincenzo, 1999, Quantum computing and single-qubit measurements using the spin filter effect, J. Appl. Phys., 85, 4785, 10.1063/1.370481
Manchon, 2015, New perspectives for Rashba spin orbit coupling, Nat. Mater., 14, 871, 10.1038/nmat4360
Pekar, 1963
Pekar, 1954
Lee, 1953, The motion of slow electrons in a polar crystal, Phys. Rev., 90, 297, 10.1103/PhysRev.90.297
Huangfu, 2008, Bound polaron in a spherical quantum dot under an electric field, Physica E, 40, 2982, 10.1016/j.physe.2008.02.020
Melnikov W.B. Fowler, 2001, Bound polaron in a spherical quantum dot: The all coupling variational approach, Phys. Rev. B, 64
Nazir, 2016, Modelling exciton phonon interactions in optically driven quantum dots, J. Phys.: Condens. Matter, 28
Feddi, 2003, Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites, Phys. Rev. B, 68, 10.1103/PhysRevB.68.235313
El Khamkhami, 2005, Magneto bound polaron in CdSe spherical quantum dots: strong coupling approach, Physica E, 25, 366, 10.1016/j.physe.2004.06.059
El Haouari, 2017, Polaronic effects on the off–center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots, Superlattices Microstruct., 111, 457, 10.1016/j.spmi.2017.06.059
Pecharsky, 1999, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater., 200, 44, 10.1016/S0304-8853(99)00397-2
Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Progr. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04
Sedehi, 2021, Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems, Physica E, 134
Edet, 2022, The magnetocaloric effect, thermo-magnetic and transport properties of LiH diatomic molecule, Mol. Phys., 120, 10.1080/00268976.2022.2059025
Fröhlich, 1950, XX properties of slow electrons in polar materials, Phil. Mag., 41, 221, 10.1080/14786445008521794
Feynman, 1955, Slow electrons in a polar crystal, Phys. Rev., 97, 660, 10.1103/PhysRev.97.660
Hassanabadi, 2011, Rashba coupling in three-electron-quantum dot: A numerical solution, Solid State Commun., 151, 1962, 10.1016/j.ssc.2011.09.009
Hassanabadi, 2012, Analytical treatment of a three electron quantum dot under Rashba spin orbit interaction, Few Body Systems, 52, 87, 10.1007/s00601-011-0234-9
Hassanabadi, 2010, Quadratic and coulomb terms for the spectrum of a three-electron quantum dot, Few-Body Syst., 48, 53, 10.1007/s00601-010-0092-x
Xie, 2011, Polaron effects on linear and nonlinear optical properties of a two-electron quantum dot, Physica B, 406, 1805, 10.1016/j.physb.2011.02.032
Xi Xia, 2004, Optical vibration modes and electron phonon interaction in ternary mixed crystals of polar semiconductors, Chin. J. Phys, 13, 71, 10.1088/1009-1963/13/1/014
Jahan, 2019, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature, Sci. Rep., 9, 15824, 10.1038/s41598-019-52190-w
Fröhlich, 1952, Interaction of electrons with lattice vibrations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 215, 291