Effects of electron–phonon coupling and Rashba spin–orbit interaction on thermodynamic and magnetic properties of quantum dots

K. Lakaal1,2, L.M. Pérez3, M. Kria1,2, J. El Hamdaoui1,2, C.O. Edet4, V. Prasad5, D. Laroze6, E. Feddi2,7
1Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco
2Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V-Agdal University, Rabat, Morocco
3Departamento de Física, FACI, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, Chile
4Department of Physics, Cross River University of Technology, Calabar, Nigeria
5Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
6Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7 D, Arica 1000000, Chile
7Institute of Applied Physics, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco

Tài liệu tham khảo

Zhao, 2022, Colloidal quantum dot solar cells: Progressive deposition techniques and future prospects on large area fabrication, Adv. Mater., 34 Huynh, 2012, Hybrid nanorod-polymer solar cells, Science, 295, 2425, 10.1126/science.1069156 Courel, 2021, A proposal to enhance SnS solar cell efficiency: the incorporation of SnSSe nanostructures, J. Phys. D: Appl. Phys., 54, 10.1088/1361-6463/ac2110 Milliron, 2004, Colloidal nanocrystal heterostructures with linear and branched topology, Nature, 430, 190, 10.1038/nature02695 Rao, 2022, Preparation of artificial graphite coated with sodium alginate as a negative electrode material for lithium-ion battery study and its lithium storage properties, Mater. Adv., 3, 8958, 10.1039/D2MA00820C Kazes, 2002, Lasing from semiconductor quantum rods in a cylindrical microcavity, Adv. Mater., 14, 317, 10.1002/1521-4095(20020219)14:4<317::AID-ADMA317>3.0.CO;2-U Wang, 2015, All inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics, Adv. Mater., 27, 7101, 10.1002/adma.201503573 Wang, 2017, Perovskite based photodetectors: materials and devices, Chem. Soc. Rev., 46, 5204, 10.1039/C6CS00896H Nautiyal, 2018, Second harmonic generation in a disk shaped quantum dot in the presence of spin–orbit interaction, Phys. Lett. A, 382, 2061, 10.1016/j.physleta.2018.05.017 Konig, 2007, Quantum spin hall insulator state in HgTe quantum wells, Science, 318, 766, 10.1126/science.1148047 Sinova, 2004, Universal intrinsic spin Hall effect, Phys. Rev. Lett., 92, 10.1103/PhysRevLett.92.126603 Kria, 2022, Rashba effect on linear and nonlinear optical properties of a cylindrical core/shell heterojunction quantum dot, J. Front. Phys., 10 Kumar, 2016, Magnetization and susceptibility of a parabolic InAs quantum dot with electron electron and spin orbit interactions in the presence of a magnetic field at finite temperature, J. Magn. Magn. Mater., 418, 169, 10.1016/j.jmmm.2016.02.071 Malik, 2020, Role of spin–orbit interactions on the entropy and heat capacity of a quantum dot helium placed in an external magnetic field, Physica E, 121, 10.1016/j.physe.2020.114097 Khordad, 2018, Simultaneous effects of electron–electron interactions, Rashba spin–orbit interaction and magnetic field on susceptibility of quantum dots, J. Magn. Magn. Mater., 449, 510, 10.1016/j.jmmm.2017.10.085 Khordad, 2019, Magnetic properties in three electrons under Rashba spin orbit interaction and magnetic field, Int. J. Quantum Chem., 119, 10.1002/qua.25994 Khoshbakht, 2021, Magnetic and thermodynamic properties of a nanowire with Rashba spin orbit interaction, J. Low Temp. Phys., 202, 59, 10.1007/s10909-020-02522-2 Nautiyal, 2021, Spin orbit effect in a quantum dot confined in a Kratzer potential, J. Magn. Magn. Mater., 528, 10.1016/j.jmmm.2020.167688 Lakaal, 2022, Polaronic corrections on magnetization and thermodynamic properties of electron electron in 2D systems with rashba spin orbit coupling, J. Magn. Magn. Mater., 551, 10.1016/j.jmmm.2022.169042 Lee, 1999, Low-lying energy spectrum of a magnetopolaron bound to a Coulomb impurity in a quantum dot, Solid State Commun., 112, 555, 10.1016/S0038-1098(99)00398-1 Lee, 2000, Polaron effect on energy spectrum in two-electron quantum dot under magnetic field, Solid State Commun., 116, 51, 10.1016/S0038-1098(00)00279-9 Hassanabadi, 2011, [Html] Rashba coupling in three electron-quantum dot under cylindrical symmetry: An exact solution, Ann. Physics, 326, 2957, 10.1016/j.aop.2011.07.011 Lee, 2000, Polaron effect on the low-lying states of a three electron quantum dot in a magnetic field, Phys. Rev. B, 62, 4661, 10.1103/PhysRevB.62.4661 Ohno, 1998, Making nonmagnetic semiconductors ferromagnetic, Science, 281, 951, 10.1126/science.281.5379.951 Flederling, 1999, Injection and detection of a spin-polarized current in a light emitting diode, Nature, 402, 787, 10.1038/45502 Ohno, 1999, Electrical spin injection in a ferromagnetic semiconductor heterostructure, Nature, 402, 790, 10.1038/45509 Ohno, 1999, Properties of ferromagnetic III V semiconductors, J. Magn. Magn. Mater., 200, 110, 10.1016/S0304-8853(99)00444-8 Dietl, 2000, Zener model description of ferromagnetism in zinc blende magnetic semiconductors, Science, 287, 1019, 10.1126/science.287.5455.1019 DiVincenzo, 1999, Quantum computing and single-qubit measurements using the spin filter effect, J. Appl. Phys., 85, 4785, 10.1063/1.370481 Manchon, 2015, New perspectives for Rashba spin orbit coupling, Nat. Mater., 14, 871, 10.1038/nmat4360 Pekar, 1963 Pekar, 1954 Lee, 1953, The motion of slow electrons in a polar crystal, Phys. Rev., 90, 297, 10.1103/PhysRev.90.297 Huangfu, 2008, Bound polaron in a spherical quantum dot under an electric field, Physica E, 40, 2982, 10.1016/j.physe.2008.02.020 Melnikov W.B. Fowler, 2001, Bound polaron in a spherical quantum dot: The all coupling variational approach, Phys. Rev. B, 64 Nazir, 2016, Modelling exciton phonon interactions in optically driven quantum dots, J. Phys.: Condens. Matter, 28 Feddi, 2003, Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites, Phys. Rev. B, 68, 10.1103/PhysRevB.68.235313 El Khamkhami, 2005, Magneto bound polaron in CdSe spherical quantum dots: strong coupling approach, Physica E, 25, 366, 10.1016/j.physe.2004.06.059 El Haouari, 2017, Polaronic effects on the off–center donor impurity in AlAs/GaAs/SiO2 spherical core/shell quantum dots, Superlattices Microstruct., 111, 457, 10.1016/j.spmi.2017.06.059 Pecharsky, 1999, Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater., 200, 44, 10.1016/S0304-8853(99)00397-2 Gschneidner, 2005, Recent developments in magnetocaloric materials, Rep. Progr. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04 Sedehi, 2021, Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems, Physica E, 134 Edet, 2022, The magnetocaloric effect, thermo-magnetic and transport properties of LiH diatomic molecule, Mol. Phys., 120, 10.1080/00268976.2022.2059025 Fröhlich, 1950, XX properties of slow electrons in polar materials, Phil. Mag., 41, 221, 10.1080/14786445008521794 Feynman, 1955, Slow electrons in a polar crystal, Phys. Rev., 97, 660, 10.1103/PhysRev.97.660 Hassanabadi, 2011, Rashba coupling in three-electron-quantum dot: A numerical solution, Solid State Commun., 151, 1962, 10.1016/j.ssc.2011.09.009 Hassanabadi, 2012, Analytical treatment of a three electron quantum dot under Rashba spin orbit interaction, Few Body Systems, 52, 87, 10.1007/s00601-011-0234-9 Hassanabadi, 2010, Quadratic and coulomb terms for the spectrum of a three-electron quantum dot, Few-Body Syst., 48, 53, 10.1007/s00601-010-0092-x Xie, 2011, Polaron effects on linear and nonlinear optical properties of a two-electron quantum dot, Physica B, 406, 1805, 10.1016/j.physb.2011.02.032 Xi Xia, 2004, Optical vibration modes and electron phonon interaction in ternary mixed crystals of polar semiconductors, Chin. J. Phys, 13, 71, 10.1088/1009-1963/13/1/014 Jahan, 2019, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature, Sci. Rep., 9, 15824, 10.1038/s41598-019-52190-w Fröhlich, 1952, Interaction of electrons with lattice vibrations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 215, 291