Effects of electromagnetic fields of low frequency and low intensity on rat metabolism

BioMagnetic Research and Technology - Tập 6 Số 1 - 2008
Gabriele Gerardi1, A. De Ninno2, Marco Prosdocimi3, V. Ferrari1, Filippo Barbaro3, Sandro Mazzariol4, Daniele Bernardini1, G. Talpo3
1Department of Veterinary Clinical Sciences, University of Padua, Agripolis, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
2ENEA, CR Frascati, Dept, FIM, Via E. Fermi, 27 00044, Frascati, Rome, Italy
3PROMETEO S.r.l., Via Marostica 2, 35100, Padua, Italy
4Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padua, Italy

Tóm tắt

Abstract A series of experiments on rats have been performed, to study the effects of long time (50 days) exposure to electromagnetic fields of extremely low frequency (ELF, i.e. less than 100 Hz) and amplitude (non thermal), testing whether the metabolic processes would be affected. The background lies on recent observations on the behaviour of isolated enzymes in vitro exposed to EFL fields. In these experiments, the cyclotron (or Larmor) frequency of the metallic ion has been used to "stimulate" the metalloproteins redox-active site, thus obtaining a clear variation of the enzyme functionality. In this paper we have extended for the first time the check to more complex animal metabolism. The novelty of this approach implies that a large amount of data had to be analyzed since it was not possible, in principle, to select only a few parameters among all the potential effects. Several biochemical parameters have been evaluated by comparing their values during the periods of exposure (field ON) and non exposure (field OFF). The evidence that long term exposure to electromagnetic fields with a well defined frequency may have relevant effects on parameters such as body weight, blood glucose and fatty acid metabolism has been obtained.

Từ khóa


Tài liệu tham khảo

Zhadin MN: Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001, 22: 27-45. 10.1002/1521-186X(200101)22:1<27::AID-BEM4>3.0.CO;2-2.

Harakawa S, Inoue N, Hori T, Tochio K, Kariya T, Takahashi K, Doge F, Martin DE, Saito A, Suzuki H, Nagasawa H: Effects of exposure to a 50 Hz electric field on plasma levels of lactate, glucose, free Fatty acids, triglycerides and creatine phosphokinase activity in hind-limb ischemic rats. J Vet Med Sci. 2005, 67: 969-74. 10.1292/jvms.67.969.

Jelenkovic A, Janac B, Pesic V, Jovanovic DM, Vasiljevic I, Prolic Z: Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull. 2006, 68: 355-60. 10.1016/j.brainresbull.2005.09.011.

Stefl B, Vojtisek M, Synecka L, Zurmanova J: Whole body exposure to low frequency magnetic field: no provable effects on the cellular energetics of rat skeletal muscle. Mol Cell Biochem. 2006, 284: 111-5. 10.1007/s11010-005-9025-2.

Feychting M, Ahlbom A, Kheifets L: EMF and health. Annu Rev Public Health. 2005, 26: 165-189. 10.1146/annurev.publhealth.26.021304.144445.

Del Giudice E, Doglia S, Milani M: Structures, Correlations and Electromagnetic Interactions in Living Matter: Theory And Applications. Biological Coherence and Response to External Stimuli. Edited by: Fröhlich H. 1988, Berlin, H Springer Verlag, 49-84.

Del Giudice E, De Ninno A, Fleischmann M, Mengoli G, Milani M, Talpo G, Vitiello G: Coherent Quantum Electrodynamics in Living Matter, Electromagn. Biology and Medicine. 2005, 24 (3): 199-210.

Comisso N, Del Giudice E, De Ninno A, Fleischmann M, Giuliani L, Mengoli G, Merlo F, Talpo G: Dynamics of the ion cyclotron resonance effect on Amino acids adsorbed at the interfaces. Bioelectromagnetics. 2006, 27 (1): 16-25. 10.1002/bem.20171.

Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT: A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 1985, 6: 327-337. 10.1002/bem.2250060402.

Liboff AR: Cyclotron Resonance in Membrane Transport. Interactions Between Electromagnetic Fields and cells. Edited by: Chiabrera A, Nicolini C, et al. 1985, New York, Plenum press, 281-296.

Zhadin MN, Fesenko EE: Ionic cyclotron resonance in biomolecules. Biomedical Science I. 1990, 1 (3): 245-250.

Zhadin MN, Novikov VV, Barnes FS, Pergola NF: Combined Action of Static and Alternating Magnetic Fields on Ionic Current in Aqueous Glutamic Acid Solutions. Bioelectromagnetics. 1998, 19: 41-45. 10.1002/(SICI)1521-186X(1998)19:1<41::AID-BEM4>3.0.CO;2-4.

De Ninno A, Prosdocimi M, Ferrari V, Gerardi G, Barbaro F, Badon T, Bernardini D: Effect of ELF e.m. fields on metallo protein redox-active sites, to be publ. arXiv:0801.2920

Edmonds DT: Larmor precession as a mechanism for detection of static and alternating magnetic fields. Biochemistry and Bioenergetics. 1993, 30: 3-12. 10.1016/0302-4598(93)80057-2.

De Lorenzo A, Andreoli A, Matthie J, Withers P: Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol May. 1997, 82 (5): 1542-58.

Carnielli VP, Pederzini F, Vittorangeli R, Luijendijk IH, Boomaars WE, Pedrotti D, Sauer PJ: Plasma and red blood cell fattyacid of very low birth weight infants fed exclusively with expressed preterm human milk. Pediatr Res. 1996, 39: 671-679. 10.1203/00006450-199604000-00019.

Summers BA, Cummings JF, de Lahunta A: Degenerative Diseases of the Central Nervous System: Metabolic and Circulatory Disorders. Veterinary Neuropathology, Mosby. 1995, Ch 5: 208-350.

Torres-Duran P, Ferriera-Hermosillo A, Juarez-Oropeza M, Elias-Vinas D, Verduco-Diaz L: Effects of whole body exposure to extremely low frequency electromagnetic fields (ELF-EMF) on serum and liver lipid levels, in the rat. Lipids in Health and Disease. 2007, 6: 31-10.1186/1476-511X-6-31.