Effects of electric field on microstructure evolution and defect formation in flash-sintered TiO2

Journal of the European Ceramic Society - Tập 42 - Trang 6040-6047 - 2022
Bo Yang1, Zhongxia Shang1, Jin Li2, Xin Li Phuah1, Jaehun Cho3, Haiyan Wang1,4, Xinghang Zhang1
1School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
2Institute of Special Environments Physical Sciences, Harbin Institute of Technology, Shenzhen, 518055, PR China
3School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, South Korea
4School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA

Tài liệu tham khảo

Todd, 2017, Flash sintering of ceramics: a short review, 1 Yu, 2017, Review of flash sintering: materials, mechanisms and modelling, Adv. Appl. Ceram., 10.1080/17436753.2016.1251051 Cologna, 2010, Flash sintering of nanograin zirconia in <5 s at 850°C, J. Am. Ceram. Soc., 93, 3556, 10.1111/j.1551-2916.2010.04089.x Todd, 2015, Electrical characteristics of flash sintering: thermal runaway of Joule heating, J. Eur. Ceram. Soc., 35, 1865, 10.1016/j.jeurceramsoc.2014.12.022 Ren, 2020, Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications, Scr. Mater., 187, 371, 10.1016/j.scriptamat.2020.06.040 Kim, 2011, Enhanced Grain Boundary Mobility in Yttria-Stabilized Cubic Zirconia under an Electric Current, J. Am. Ceram. Soc., 94, 4231, 10.1111/j.1551-2916.2011.04800.x Muccillo, 2014, Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering, J. Eur. Ceram. Soc., 34, 3871, 10.1016/j.jeurceramsoc.2014.04.046 Qin, 2017, Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia, Mater. Manuf. Process., 32, 549, 10.1080/10426914.2016.1232814 Zhang, 2017, Densification of 8 mol% yttria-stabilized zirconia at low temperature by flash sintering technique for solid oxide fuel cells, Ceram. Int., 43, 14037, 10.1016/j.ceramint.2017.07.137 Carvalho, 2018, AC electric field assisted pressureless sintering zirconia: 3 mol% yttria solid electrolyte, Phys. Status Solidi (A) Appl. Mater. Sci., 215, 1 Yoon, 2018, Measurement of O and Ti atom displacements in TiO2during flash sintering experiments, J. Am. Ceram. Soc., 101, 1811, 10.1111/jace.15375 Yang, 2022, Effects of incubation on microstructure gradient in flash-sintered TiO2, Scr. Mater., 207, 10.1016/j.scriptamat.2021.114270 Wang, 2019, Staged microstructural study of flash sintered titania, Mater. (Oxf. ), 8 Wang, 2021, The effect of atmosphere on the flash-sintering of nanoscale titania ceramics, Scr. Mater., 199, 10.1016/j.scriptamat.2021.113894 Charalambous, 2018, In situ measurement of temperature and reduction of rutile titania using energy dispersive x-ray diffraction, J. Eur. Ceram. Soc., 38, 5503, 10.1016/j.jeurceramsoc.2018.08.032 Phuah, 2020, Field-assisted heating of Gd-doped ceria thin film, J. Am. Ceram. Soc., 103, 2309, 10.1111/jace.16949 Jha, 2018, In-situ observation of oxygen mobility and abnormal lattice expansion in ceria during flash sintering, Ceram. Int., 44, 15362, 10.1016/j.ceramint.2018.05.186 Hao, 2012, A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current, J. Power Sources, 210, 86, 10.1016/j.jpowsour.2012.03.006 Mishra, 2020, Electronic conductivity in gadolinium doped ceria under direct current as a trigger for flash sintering, Scr. Mater., 179, 55, 10.1016/j.scriptamat.2020.01.007 Nie, 2017, Two-step flash sintering of ZnO: Fast densification with suppressed grain growth, Scr. Mater., 141, 6, 10.1016/j.scriptamat.2017.07.015 Charalambous, 2018, Investigation of temperature approximation methods during flash sintering of ZnO, Ceram. Int., 44, 6162, 10.1016/j.ceramint.2017.12.250 Phuah, 2021, Microstructure and defect gradients in DC and AC flash sintered ZnO, Ceram. Int., 47, 28596, 10.1016/j.ceramint.2021.07.018 Shi, 2019, Flash sintering of barium titanate, Ceram. Int., 45, 7085, 10.1016/j.ceramint.2018.12.211 M’Peko, 2014, Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity, J. Eur. Ceram. Soc., 34, 3655, 10.1016/j.jeurceramsoc.2014.04.041 Ren, 2020, The densification behavior of flash sintered BaTiO3, Scr. Mater., 186, 362, 10.1016/j.scriptamat.2020.05.005 Perez-Maqueda, 2017, Flash sintering of highly insulating nanostructured phase-pure BiFeO3, J. Am. Ceram. Soc., 100, 3365, 10.1111/jace.14990 Rheinheimer, 2019, The role of point defects and defect gradients in flash sintering of perovskite oxides, Acta Mater., 165, 398, 10.1016/j.actamat.2018.12.007 Karakuscu, 2012, Defect structure of flash-sintered strontium titanate, J. Am. Ceram. Soc., 95, 2531, 10.1111/j.1551-2916.2012.05240.x Chaim, 2020, Reactive flash sintering (RFS) in oxide systems: kinetics and thermodynamics, J. Mater. Sci. Yoon, 2020, Reactive flash sintering of the entropy-stabilized oxide Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O, Scr. Mater., 181, 48, 10.1016/j.scriptamat.2020.02.006 Chaim, 2019, Liquid-Film Assisted Mechanism of Reactive Flash Sintering in Oxide Systems, Materials, 12, 1494, 10.3390/ma12091494 B. Yoon, Devinder Yadav, S. Ghose, Rishi Raj, Reactive flash sintering: MgO and α-Al 2 O 3 transform and sinter into single-phase polycrystals of MgAl 2 O 4, 2018. https://doi.org/10.1111/jace.15974. Cho, 2020, Temperature effect on mechanical response of flash-sintered ZnO by in-situ compression tests, Acta Mater., 200, 699, 10.1016/j.actamat.2020.09.029 Li, 2019, Nanoscale stacking fault–assisted room temperature plasticity in flash-sintered TiO2, Sci. Adv., 5, 10.1126/sciadv.aaw5519 Jha, 2014, The effect of electric field on sintering and electrical conductivity of Titania, J. Am. Ceram. Soc., 97, 527, 10.1111/jace.12682 Biesuz, 2018, Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ, Mater. (Basel)., 11 Vendrell, 2019, Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized zirconia, J. Eur. Ceram. Soc., 39, 1352, 10.1016/j.jeurceramsoc.2018.12.048 Charalambous, 2018, Inhomogeneous reduction and its relation to grain growth of titania during flash sintering, Scr. Mater., 155, 37, 10.1016/j.scriptamat.2018.06.017 Grimley, 2021, A thermal perspective of flash sintering: The effect of AC current ramp rate on microstructure evolution, J. Eur. Ceram. Soc., 41, 2807, 10.1016/j.jeurceramsoc.2020.11.040 Yan, 1982, Preparation and properties of TiO2 varistors, Appl. Phys. Lett., 40, 536, 10.1063/1.93134 Zhao, 2017, Effect of thermal treatment on TiO2 varistor properties in different atmospheres, J. Eur. Ceram. Soc., 37, 3353, 10.1016/j.jeurceramsoc.2017.04.021 S.H. Choi, S.-O. Park, S. Seo, S. Choi, Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer, 2022. 〈https://www.science.org〉. L.M. Levinson, ZINC OXIDE VARISTORS-A REVIEW. ZnO Varistor Technology, 2018. 〈https://www.researchgate.net/publication/279896134〉. Nambu, 2022, Densification of Y2O3 by flash sintering under an AC electric field, J. Eur. Ceram. Soc., 42, 567, 10.1016/j.jeurceramsoc.2021.10.029 Qin, 2017, Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia, Mater. Manuf. Process., 32, 549, 10.1080/10426914.2016.1232814 Conrad, 2014, Equivalence of AC and DC electric field on retarding grain growth in yttria-stabilized zirconia, Scr. Mater. 72–, 73, 33, 10.1016/j.scriptamat.2013.10.010 Steil, 2013, From conventional ac flash-sintering of YSZ to hyper-flash and double flash, J. Eur. Ceram. Soc., 33, 2093, 10.1016/j.jeurceramsoc.2013.03.019 Dang, 2019, Oxygen stoichiometry, chemical expansion or contraction, and electrical properties of rutile, TiO2±δ ceramics, J. Am. Ceram. Soc., 102, 251, 10.1111/jace.15889 Santara, 2014, Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures, J. Phys. D: Appl. Phys., 47, 10.1088/0022-3727/47/21/215302 Parker, 1990, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2, Appl. Phys. Lett., 57, 943, 10.1063/1.104274 Kamaladasa, 2015, In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2, Microsc. Microanal., 21, 140, 10.1017/S1431927614013555 Nowotny, 2006, Electrical properties and defect chemistry of TiO2 single crystal. III. Equilibration kinetics and chemical diffusion, J. Phys. Chem. B, 110, 16292, 10.1021/jp060623k Kim, 2007, Anode-interface localized filamentary mechanism in resistive switching of Ti O2 thin films, Appl. Phys. Lett., 91, 6 Tang, 2017, Distinguishing oxygen vacancy electromigration and conductive filament formation in TiO2 resistance switching using liquid electrolyte contacts, Nano Lett., 17, 4390, 10.1021/acs.nanolett.7b01460 Abdelouahed, 2015, Relevance of non-equilibrium defect generation processes to resistive switching in TiO2, J. Appl. Phys., 118, 10.1063/1.4932225 Zhu, 2013, Magnéli phase Ti4O7 powder from carbothermal reduction method: Formation, conductivity and optical properties, J. Mater. Sci.: Mater. Electron., 24, 4853 Fan, 2018, Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance, J. Eur. Ceram. Soc., 38, 507, 10.1016/j.jeurceramsoc.2017.09.040 Rawlins, 2000, CHAPTER 1 - introduction to alternating current, 1 Campos, 2019, Development of an instrumented and automated flash sintering setup for enhanced process monitoring and parameter control, J. Eur. Ceram. Soc., 39, 531, 10.1016/j.jeurceramsoc.2018.09.002 Moballegh, 2015, Electric-field-induced point defect redistribution in single-crystal TiO2-x and effects on electrical transport, Acta Mater., 86, 352, 10.1016/j.actamat.2014.11.032 M. Reece, R. Morrell, Electron microscope study of non-stoichiometric titania, 1991. Sun, 2015, Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide, Nat. Commun., 6, 2, 10.1038/ncomms8120 Arif, 2017, Highly conductive nano-sized Magnéli phases titanium oxide (TiOx), Sci. Rep., 7, 1, 10.1038/s41598-017-03509-y Kwon, 2015, Oxygen vacancy creation, drift, and aggregation in TiO<inf>2</inf>-based resistive switches at low temperature and voltage, Adv. Funct. Mater., 25, 2876, 10.1002/adfm.201500444