Effects of electric field on microstructure evolution and defect formation in flash-sintered TiO2
Tài liệu tham khảo
Todd, 2017, Flash sintering of ceramics: a short review, 1
Yu, 2017, Review of flash sintering: materials, mechanisms and modelling, Adv. Appl. Ceram., 10.1080/17436753.2016.1251051
Cologna, 2010, Flash sintering of nanograin zirconia in <5 s at 850°C, J. Am. Ceram. Soc., 93, 3556, 10.1111/j.1551-2916.2010.04089.x
Todd, 2015, Electrical characteristics of flash sintering: thermal runaway of Joule heating, J. Eur. Ceram. Soc., 35, 1865, 10.1016/j.jeurceramsoc.2014.12.022
Ren, 2020, Flash sintering of yttria-stabilized zirconia: Fundamental understanding and applications, Scr. Mater., 187, 371, 10.1016/j.scriptamat.2020.06.040
Kim, 2011, Enhanced Grain Boundary Mobility in Yttria-Stabilized Cubic Zirconia under an Electric Current, J. Am. Ceram. Soc., 94, 4231, 10.1111/j.1551-2916.2011.04800.x
Muccillo, 2014, Shrinkage control of yttria-stabilized zirconia during ac electric field-assisted sintering, J. Eur. Ceram. Soc., 34, 3871, 10.1016/j.jeurceramsoc.2014.04.046
Qin, 2017, Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia, Mater. Manuf. Process., 32, 549, 10.1080/10426914.2016.1232814
Zhang, 2017, Densification of 8 mol% yttria-stabilized zirconia at low temperature by flash sintering technique for solid oxide fuel cells, Ceram. Int., 43, 14037, 10.1016/j.ceramint.2017.07.137
Carvalho, 2018, AC electric field assisted pressureless sintering zirconia: 3 mol% yttria solid electrolyte, Phys. Status Solidi (A) Appl. Mater. Sci., 215, 1
Yoon, 2018, Measurement of O and Ti atom displacements in TiO2during flash sintering experiments, J. Am. Ceram. Soc., 101, 1811, 10.1111/jace.15375
Yang, 2022, Effects of incubation on microstructure gradient in flash-sintered TiO2, Scr. Mater., 207, 10.1016/j.scriptamat.2021.114270
Wang, 2019, Staged microstructural study of flash sintered titania, Mater. (Oxf. ), 8
Wang, 2021, The effect of atmosphere on the flash-sintering of nanoscale titania ceramics, Scr. Mater., 199, 10.1016/j.scriptamat.2021.113894
Charalambous, 2018, In situ measurement of temperature and reduction of rutile titania using energy dispersive x-ray diffraction, J. Eur. Ceram. Soc., 38, 5503, 10.1016/j.jeurceramsoc.2018.08.032
Phuah, 2020, Field-assisted heating of Gd-doped ceria thin film, J. Am. Ceram. Soc., 103, 2309, 10.1111/jace.16949
Jha, 2018, In-situ observation of oxygen mobility and abnormal lattice expansion in ceria during flash sintering, Ceram. Int., 44, 15362, 10.1016/j.ceramint.2018.05.186
Hao, 2012, A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current, J. Power Sources, 210, 86, 10.1016/j.jpowsour.2012.03.006
Mishra, 2020, Electronic conductivity in gadolinium doped ceria under direct current as a trigger for flash sintering, Scr. Mater., 179, 55, 10.1016/j.scriptamat.2020.01.007
Nie, 2017, Two-step flash sintering of ZnO: Fast densification with suppressed grain growth, Scr. Mater., 141, 6, 10.1016/j.scriptamat.2017.07.015
Charalambous, 2018, Investigation of temperature approximation methods during flash sintering of ZnO, Ceram. Int., 44, 6162, 10.1016/j.ceramint.2017.12.250
Phuah, 2021, Microstructure and defect gradients in DC and AC flash sintered ZnO, Ceram. Int., 47, 28596, 10.1016/j.ceramint.2021.07.018
Shi, 2019, Flash sintering of barium titanate, Ceram. Int., 45, 7085, 10.1016/j.ceramint.2018.12.211
M’Peko, 2014, Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity, J. Eur. Ceram. Soc., 34, 3655, 10.1016/j.jeurceramsoc.2014.04.041
Ren, 2020, The densification behavior of flash sintered BaTiO3, Scr. Mater., 186, 362, 10.1016/j.scriptamat.2020.05.005
Perez-Maqueda, 2017, Flash sintering of highly insulating nanostructured phase-pure BiFeO3, J. Am. Ceram. Soc., 100, 3365, 10.1111/jace.14990
Rheinheimer, 2019, The role of point defects and defect gradients in flash sintering of perovskite oxides, Acta Mater., 165, 398, 10.1016/j.actamat.2018.12.007
Karakuscu, 2012, Defect structure of flash-sintered strontium titanate, J. Am. Ceram. Soc., 95, 2531, 10.1111/j.1551-2916.2012.05240.x
Chaim, 2020, Reactive flash sintering (RFS) in oxide systems: kinetics and thermodynamics, J. Mater. Sci.
Yoon, 2020, Reactive flash sintering of the entropy-stabilized oxide Mg0.2Ni0.2Co0.2Cu0.2Zn0.2O, Scr. Mater., 181, 48, 10.1016/j.scriptamat.2020.02.006
Chaim, 2019, Liquid-Film Assisted Mechanism of Reactive Flash Sintering in Oxide Systems, Materials, 12, 1494, 10.3390/ma12091494
B. Yoon, Devinder Yadav, S. Ghose, Rishi Raj, Reactive flash sintering: MgO and α-Al 2 O 3 transform and sinter into single-phase polycrystals of MgAl 2 O 4, 2018. https://doi.org/10.1111/jace.15974.
Cho, 2020, Temperature effect on mechanical response of flash-sintered ZnO by in-situ compression tests, Acta Mater., 200, 699, 10.1016/j.actamat.2020.09.029
Li, 2019, Nanoscale stacking fault–assisted room temperature plasticity in flash-sintered TiO2, Sci. Adv., 5, 10.1126/sciadv.aaw5519
Jha, 2014, The effect of electric field on sintering and electrical conductivity of Titania, J. Am. Ceram. Soc., 97, 527, 10.1111/jace.12682
Biesuz, 2018, Investigation of Electrochemical, Optical and Thermal Effects during Flash Sintering of 8YSZ, Mater. (Basel)., 11
Vendrell, 2019, Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized zirconia, J. Eur. Ceram. Soc., 39, 1352, 10.1016/j.jeurceramsoc.2018.12.048
Charalambous, 2018, Inhomogeneous reduction and its relation to grain growth of titania during flash sintering, Scr. Mater., 155, 37, 10.1016/j.scriptamat.2018.06.017
Grimley, 2021, A thermal perspective of flash sintering: The effect of AC current ramp rate on microstructure evolution, J. Eur. Ceram. Soc., 41, 2807, 10.1016/j.jeurceramsoc.2020.11.040
Yan, 1982, Preparation and properties of TiO2 varistors, Appl. Phys. Lett., 40, 536, 10.1063/1.93134
Zhao, 2017, Effect of thermal treatment on TiO2 varistor properties in different atmospheres, J. Eur. Ceram. Soc., 37, 3353, 10.1016/j.jeurceramsoc.2017.04.021
S.H. Choi, S.-O. Park, S. Seo, S. Choi, Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer, 2022. 〈https://www.science.org〉.
L.M. Levinson, ZINC OXIDE VARISTORS-A REVIEW. ZnO Varistor Technology, 2018. 〈https://www.researchgate.net/publication/279896134〉.
Nambu, 2022, Densification of Y2O3 by flash sintering under an AC electric field, J. Eur. Ceram. Soc., 42, 567, 10.1016/j.jeurceramsoc.2021.10.029
Qin, 2017, Temperature gradient and microstructure evolution in AC flash sintering of 3 mol% yttria-stabilized zirconia, Mater. Manuf. Process., 32, 549, 10.1080/10426914.2016.1232814
Conrad, 2014, Equivalence of AC and DC electric field on retarding grain growth in yttria-stabilized zirconia, Scr. Mater. 72–, 73, 33, 10.1016/j.scriptamat.2013.10.010
Steil, 2013, From conventional ac flash-sintering of YSZ to hyper-flash and double flash, J. Eur. Ceram. Soc., 33, 2093, 10.1016/j.jeurceramsoc.2013.03.019
Dang, 2019, Oxygen stoichiometry, chemical expansion or contraction, and electrical properties of rutile, TiO2±δ ceramics, J. Am. Ceram. Soc., 102, 251, 10.1111/jace.15889
Santara, 2014, Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures, J. Phys. D: Appl. Phys., 47, 10.1088/0022-3727/47/21/215302
Parker, 1990, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2, Appl. Phys. Lett., 57, 943, 10.1063/1.104274
Kamaladasa, 2015, In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2, Microsc. Microanal., 21, 140, 10.1017/S1431927614013555
Nowotny, 2006, Electrical properties and defect chemistry of TiO2 single crystal. III. Equilibration kinetics and chemical diffusion, J. Phys. Chem. B, 110, 16292, 10.1021/jp060623k
Kim, 2007, Anode-interface localized filamentary mechanism in resistive switching of Ti O2 thin films, Appl. Phys. Lett., 91, 6
Tang, 2017, Distinguishing oxygen vacancy electromigration and conductive filament formation in TiO2 resistance switching using liquid electrolyte contacts, Nano Lett., 17, 4390, 10.1021/acs.nanolett.7b01460
Abdelouahed, 2015, Relevance of non-equilibrium defect generation processes to resistive switching in TiO2, J. Appl. Phys., 118, 10.1063/1.4932225
Zhu, 2013, Magnéli phase Ti4O7 powder from carbothermal reduction method: Formation, conductivity and optical properties, J. Mater. Sci.: Mater. Electron., 24, 4853
Fan, 2018, Preparation of monophasic titanium sub-oxides of Magnéli phase with enhanced thermoelectric performance, J. Eur. Ceram. Soc., 38, 507, 10.1016/j.jeurceramsoc.2017.09.040
Rawlins, 2000, CHAPTER 1 - introduction to alternating current, 1
Campos, 2019, Development of an instrumented and automated flash sintering setup for enhanced process monitoring and parameter control, J. Eur. Ceram. Soc., 39, 531, 10.1016/j.jeurceramsoc.2018.09.002
Moballegh, 2015, Electric-field-induced point defect redistribution in single-crystal TiO2-x and effects on electrical transport, Acta Mater., 86, 352, 10.1016/j.actamat.2014.11.032
M. Reece, R. Morrell, Electron microscope study of non-stoichiometric titania, 1991.
Sun, 2015, Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide, Nat. Commun., 6, 2, 10.1038/ncomms8120
Arif, 2017, Highly conductive nano-sized Magnéli phases titanium oxide (TiOx), Sci. Rep., 7, 1, 10.1038/s41598-017-03509-y
Kwon, 2015, Oxygen vacancy creation, drift, and aggregation in TiO<inf>2</inf>-based resistive switches at low temperature and voltage, Adv. Funct. Mater., 25, 2876, 10.1002/adfm.201500444