Effects of doped ceria conductivity on the performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode for solid oxide fuel cell

International Journal of Hydrogen Energy - Tập 37 - Trang 8582-8591 - 2012
Yunlong Wang1, Lei Zhang2, Fanglin Chen2, Changrong Xia1
1CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
2Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 USA

Tài liệu tham khảo

Deseure, 2005, Modelling of dc and ac responses of a planar mixed conducting oxygen electrode, Solid State Ionics, 176, 235, 10.1016/j.ssi.2004.07.018 Jamnik, 2001, Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications, Phys Chem Chem Phys, 3, 1668, 10.1039/b100180i Adler, 1996, Electrode kinetics of porous mixed-conducting oxygen electrodes, J Electrochem Soc, 143, 3554, 10.1149/1.1837252 Baumann, 2008, The polarization resistance of mixed conducting SOFC cathodes: a comparative study using thin film model electrodes, Solid State Ionics, 179, 1198, 10.1016/j.ssi.2008.02.059 Baumann, 2006, Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy, Solid State Ionics, 177, 3187, 10.1016/j.ssi.2006.07.057 Tsipis, 2008, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review I. Performance-determining factors, J Solid State Electrochem, 12, 1039, 10.1007/s10008-007-0468-0 Yoon, 2003, Characteristics of cathodic polarization at Pt/YSZ interface without the effect of electrode microstructure, J Power Sources, 115, 27, 10.1016/S0378-7753(02)00720-6 Grunbaum, 2006, Electrode reaction of Sr1−xLaxCo0.8Fe0.2O3−δ with x = 0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600 ≤T ≤ 800 °C, Solid State Ionics, 177, 907, 10.1016/j.ssi.2006.02.009 Escudero, 2007, A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy, J Electroanal Chem, 611, 107, 10.1016/j.jelechem.2007.08.006 Chen, 2009, Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte, J Power Sources, 188, 96, 10.1016/j.jpowsour.2008.11.045 Kim, 2001, Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, 143, 379, 10.1016/S0167-2738(01)00877-3 Leng, 2008, Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int J Hydrogen Energy, 33, 3808, 10.1016/j.ijhydene.2008.04.034 Liu, 1998, Significance of interfaces in solid-state cells with porous electrodes of mixed ionic-electronic conductors, Solid State Ionics, 107, 105, 10.1016/S0167-2738(97)00528-6 Uchida, 1999, Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of various cathodes in solid oxide fuel cells, J Electrochem Soc, 146, 1, 10.1149/1.1391555 Hibino, 2000, A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures, Science, 288, 2031, 10.1126/science.288.5473.2031 Kenjo, 2002, Influence of the local variation of the polarization resistance on SOFC cathodes, Solid State Ionics, 148, 1, 10.1016/S0167-2738(02)00119-4 Ding, 2008, High reactive Ce0.8Sm0.2O1.9 powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells, Solid State Ionics, 179, 896, 10.1016/j.ssi.2007.11.015 Zhu, 2005, Preparation and electrical properties of La0.4Sr0.6Ni0.2Fe0.8O3 using a glycine nitrate process, Ceram Int, 31, 115, 10.1016/j.ceramint.2004.03.042 Xia, 2001, Reduced-temperature solid oxide fuel cells fabricated by screen printing, Electrochem Solid-State Lett, 4, A52, 10.1149/1.1361158 Kosinski, 2011, Preparation and property-performance relationships in samarium-doped ceria nanopowders for solid oxide fuel cell electrolytes, J Power Sources, 196, 2498, 10.1016/j.jpowsour.2010.11.041 Mogensen, 2000, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 129, 63, 10.1016/S0167-2738(99)00318-5 Abrantes, 2003, Electronic transport in Ce0.8Sm0.2O1.9−δ ceramics under reducing conditions, Electrochim Acta, 48, 2761, 10.1016/S0013-4686(03)00395-5 Zhan, 2001, AC impedance investigation of samarium-doped ceria, J Electrochem Soc, 148, A427, 10.1149/1.1359198 Green, 2008, Carbon dioxide reduction on gadolinia-doped ceria cathodes, Solid State Ionics, 179, 647, 10.1016/j.ssi.2008.04.024 Chen, 2003, Identification of O2 reduction processes at yttria stabilized zirconia|doped lanthanum manganite interface, J Power Sources, 123, 17, 10.1016/S0378-7753(03)00436-1 Fonseca, 2010, Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells, J Power Sources, 195, 1599, 10.1016/j.jpowsour.2009.09.050 Uhlenbruck, 2007, Thin film coating technologies of (Ce, Gd)O2−δ interlayers for application in ceramic high-temperature fuel cells, Thin Solid Films, 515, 4053, 10.1016/j.tsf.2006.10.127 Grunbaum, 2009, Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3−δ electrode material, Solid State Ionics, 180, 1448, 10.1016/j.ssi.2009.09.005