Effects of delamination in drilling glass/polyester composite
Tóm tắt
Considering failures during machinery processes such as drilling, a precautionary analysis involving delamination and the corresponding dissipated energy is required, especially for composite structures. In this context, because of the complexity of both the analysis procedure and experimental test setup, most studies prefer to represent mode I and III interlaminar crack propagation instead of that involving mode II. Therefore, in this study, the effect of mode II delamination and corresponding interlaminar crack propagation was considered during the drilling process of multilayered glass/polyester composites using both numerical and experimental approaches. In the experimental procedure, the mechanical properties of the glass/polyester specimens were obtained according to ASTM D3039. In addition, the interlaminar mixed-mode (I/II) loadings were determined using an ARCAN test fixture so that the fracture toughness of glass/polyester could then be identified. The mode II critical strain energy release rate (CSERR) was then obtained using an experimental test performed using an ARCAN fixture and the virtual crack closure technique (VCCT). It was determined that the numerical approach was in accordance with the experiments, and more than 95% of crack propagation could be attributed to mode II compared to the two other modes.
Tài liệu tham khảo
Kavad B, Pandey A B, Tadavi M V, Jakharia H C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technology, 2014, 14: 457–464
Tagliaferri V, Caprino G, Diterlizzi A. Effect of drilling parameters on the finish and mechanical properties of GFRP composites. International Journal of Machine Tools & Manufacture, 1990, 30(1): 77–84
Jain S, Yang D C. Effects of feedrate and chisel edge on delamination in composites drilling. Journal of Engineering for Industry, 1993, 115(4): 398–405
König W, Grass P. Quality definition and assessment in drilling of fibre reinforced thermosets. CIRP Annals, 1989, 38(1): 119–124
Takeyama H, Kato S. Burrless drilling by means of ultrasonic vibration. CIRP Annals, 1991, 40(1): 83–86
Zhang D Y, Feng X J, Wang L J, Chen D C. Study on the drill skidding motion in ultrasonic vibration microdrilling. International Journal of Machine Tools & Manufacture, 1994, 34(6): 847–857
Wang X, Wang L, Tao J. Investigation on thrust in vibration drilling of fiber-reinforced plastics. Journal of Materials Processing Technology, 2004, 148(2): 239–244
Wang L, Wang L J, He Y H, Yang Z J. Prediction and computer simulation of dynamic thrust and torque in vibration drilling. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 1998, 212(6): 489–497
Zhang L, Wang L, Xin W. Study on vibration drilling of fiber reinforced plastics with hybrid variation parameters method. Composites. Part A, Applied Science and Manufacturing, 2003, 34(3): 237–244
Khashaba U, Seif M, Elhamid M. Drilling analysis of chopped composites. Composites. Part A, Applied Science and Manufacturing, 2007, 38(1): 61–70
El-Sonbaty I, Khashaba U, Machaly T. Factors affecting the machinability of GFR/epoxy composites. Composite Structures, 2004, 63(3–4): 329–338
Khashaba U, El-Sonbaty I A, Selmy A I, Megahed A A. Machinability analysis in drilling woven GFR/epoxy composites: Part I-Effect of machining parameters. Composites. Part A, Applied Science and Manufacturing, 2010, 41(3): 391–400
Khashaba U. Drilling of polymer matrix composites: A review. Journal of Composite Materials, 2013, 47(15): 1817–1832
Kilickap E. Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications, 2010, 37(8): 6116–6122
Rajamurugan T, Shanmugam K, Rajakumar S, Palanikumar K. Modelling and analysis of thrust force in drilling of GFRP Composites using Response Surface Methodology (RSM). Procedia Engineering, 2012, 38: 3757–3768
Reddy A R, Reddy K S, Hussain P, Reddy B S, Babu S S. An experimental study using design of experiment method to compare the performance of solid carbide and HSS drills in drilling of GFRP composite material. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(4): 216–221
Khashaba U, El-Sonbaty I A, Selmy A I, Megahed A A. Drilling analysis of woven glass fiber-reinforced/epoxy composites. Journal of Composite Materials, 2013, 47(2): 191–205
Venkateshwaran N, ElayaPerumal A. Hole quality evaluation of natural fiber composite using image analysis technique. Journal of Reinforced Plastics and Composites, 2013, 32(16): 1188–1197
Ramkumar J, Malhotra S, Krishnamurthy R. Effect of workpiece vibration on drilling of GFRP laminates. Journal of Materials Processing Technology, 2004, 152(3): 329–332
Sadek A, Attia M H, Meshreki M, Shi B. Characterization and optimization of vibration-assisted drilling of fibre reinforced epoxy laminates. CIRP Annals, 2013, 62(1): 91–94
Rubio J C, Abrao A M, Faria P E, Correia A E, Davim J P. Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. International Journal of Machine Tools & Manufacture, 2008, 48(6): 715–720
Hocheng H, Tsao C. Effects of special drill bits on drilling-induced delamination of composite materials. International Journal of Machine Tools & Manufacture, 2006, 46(12–13): 1403–1416
Hocheng H, Tsao C. Comprehensive analysis of delamination in drilling of composite materials with various drill bits. Journal of Materials Processing Technology, 2003, 140(1–3): 335–339
Tsao C, Hocheng H. Effect of eccentricity of twist drill and candle stick drill on delamination in drilling composite materials. International Journal of Machine Tools & Manufacture, 2005, 45(2): 125–130
Tsao C. Effect of induced bending moment (IBM) on critical thrust force for delamination in step drilling of composites. International Journal of Machine Tools & Manufacture, 2012, 59: 1–5
Tsao C, Hocheng H. Effects of peripheral drilling moment on delamination using special drill bits. Journal of Materials Processing Technology, 2008, 201(1–3): 471–476
Zabala H, Aretxabaleta L, Castillo G, Aurrekoetxea J. Dynamic 4 ENF test for a strain rate dependent mode II interlaminar fracture toughness characterization of unidirectional carbon fibre epoxy composites. Polymer Testing, 2016, 55: 212–218
Msekh M A, Cuong N H, Zi G, Areias P, Zhuang X, Rabczuk T. Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 2018, 188: 287–299
Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
Machado J M, Marques E A S, Campilho R D S G, da Silva L F M. Mode II fracture toughness of CFRP as a function of temperature and strain rate. Composites. Part B, Engineering, 2017, 114: 311–318
Fernandes R L, de Moura M F S F, Moreira RDF. Effect of moisture on pure mode I and II fracture behaviour of composite bonded joints. International Journal of Adhesion and Adhesives, 2016, 68: 30–38
Sajith S, Arumugam V, Dhakal H N. Effects of curing pressure on mode II fracture toughness of uni-directional GFRP laminates. Polymer Testing, 2015, 48: 59–68
Triki E, Zouari B, Dammak F. Dependence of the interlaminar fracture toughness of E-Glass/Polyester woven fabric composites laminates on ply orientation. Engineering Fracture Mechanics, 2016, 159: 63–78
Davies P, Casari P, Carlsson L A. Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen. Composites Science and Technology, 2005, 65(2): 295–300
Huddhar A, Desai A, Sharanaprabhu C M, Kudari S K, Gouda P S S. Studies on effect of pre-crack length variation on Inter-laminar fracture toughness of a Glass Epoxy laminated composite. IOP Conference Series. Materials Science and Engineering, 2016, 149: 012161
Sheikh-Ahmad J Y. Machining of polymer composites. New York: Springer, 2009
Ho-Cheng H, Dharan C K H. Delamination during drilling in composite laminates. Journal of Engineering for Industry, 1990, 112(3): 236–239
Zitoune R, Collombet F. Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Composites Part A, Applied Science and Manufacturing, 2007, 38(3): 858–866
Zitoune R, Krishnaraj V, Collombet F, Le Roux S. Experimental and numerical analysis on drilling of carbon fibre reinforced plastic and aluminium stacks. Composite Structures, 2016, 146: 148–158
Rahme P, Landon Y, Lachaud F, Piquet R, Lagarrigue P. Delamination-free drilling of thick composite materials. Composites. Part A, Applied Science and Manufacturing, 2015, 72: 148–159
Noda N A, Xu C. Controlling parameter of the stress intensity factors for a planar interfacial crack in three-dimensional bimaterials. International Journal of Solids and Structures, 2008, 45(3–4): 1017–1031
Tweed J, Das S, Rooke D, Rooke D P. The stress intensity factors of a radial crack in a finite elastic disc. International Journal of Engineering Science, 1972, 10(3): 323–335
Tweed J, Rooke D. The stress intensity factor of an edge crack in a finite elastic disc. International Journal of Engineering Science, 1973, 11(1): 65–73
Ma K, Liu C. Semi-weight function method on computation of stress intensity factors in dissimilar materials. Applied Mathematics and Mechanics, 2004, 25(11): 1241–1248
Jones I, Rothwell G. Reference stress intensity factors with application to weight functions for internal circumferential cracks in cylinders. Engineering Fracture Mechanics, 2001, 68(4): 435–454
Seifi R. Stress intensity factors for internal surface cracks in autofrettaged functionally graded thick cylinders using weight function method. Theoretical and Applied Fracture Mechanics, 2015, 75: 113–123
Chen A J, Zeng W J. Weight function for stress intensity factors in rotating thick-walled cylinder. Applied Mathematics and Mechanics, 2006, 27(1): 29–35
Wang Y, Tham L G, Lee P K K, Tsui Y. A boundary collocation method for cracked plates. Computers & Structures, 2003, 81(28–29): 2621–2630
Fett T. Stress intensity factors and T-stress for single and double-edge-cracked circular disks under mixed boundary conditions. Engineering Fracture Mechanics, 2002, 69(1): 69–83
Kotousov A, Berto F, Lazzarin P, Pegorin F. Three dimensional finite element mixed fracture mode under anti-plane loading of a crack. Theoretical and Applied Fracture Mechanics, 2012, 62: 26–33
Tsang D, Oyadiji S, Leung A. Two-dimensional fractal-like finite element method for thermoelastic crack analysis. International Journal of Solids and Structures, 2007, 44(24): 7862–7876
Branco R, Antunes F. Finite element modelling and analysis of crack shape evolution in mode-I fatigue Middle Cracked Tension specimens. Engineering Fracture Mechanics, 2008, 75(10): 3020–3037
Sanati H, Amini A, Reshadi F, Soltani N, Faraji G, Zalnezhad E. The stress intensity factors (SIFs) of cracked half-plane specimen in contact with semi-circular object. Theoretical and Applied Fracture Mechanics, 2015, 75: 104–112
Maschke H G, Kuna M. A review of boundary and finite element methods in fracture mechanics. Theoretical and Applied Fracture Mechanics, 1985, 4(3): 181–189
Mavrothanasis F, Pavlou D. Mode-I stress intensity factorderivation by a suitable Green’s function. Engineering Analysis with Boundary Elements, 2007, 31(2): 184–190
Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
Fett T, Bahr H. Mode I stress intensity factors and weight functions for short plates under different boundary conditions. Engineering Fracture Mechanics, 1999, 62(6): 593–606