Effects of crowding and sex on fecal cortisol levels of captive forest musk deer

Biological Research - Tập 47 - Trang 1-6 - 2014
Lan He1,2,3, Wen-Xia Wang1, Lin-Hai Li1,4, Bao-Qing Liu5, Gang Liu1, Shu-Qiang Liu1, Lei Qi1, De-Fu Hu1
1Laboratory of Non-invasive Research Technology for Endangered Species, College of Nature Conservation, Beijing Forestry University, Beijing, China
2Key Laboratory of Species Diversity Application and Control in Xinjiang, Xinjiang Normal Univesity, Urumqi, China
3Xinjiang Normal University, Urumqi, China
4Beijing Natural History Museum, Beinjing, China
5Breeding Centre of Forest Musk Deer in Pientzehuang, China

Tóm tắt

Restricted space and close contact with conspecifics in captivity may be stressful for musk deer, as they are highly territorial and solitary in the wild. So we tested the effects of crowding on stress of forest musk deer (Moschus berezovskii) in heterosexual groups, using fecal cortisol analysis as a non-invasive method. 32 healthy adults during non-breeding seasons were chose as our experimental objects. Group 1 was defined as higher crowding condition, with 10-15 m2/deer (6 enclosures, 10♀ and 6♂); group 2 was defined as lower crowding condition, with 23-33 m2/deer (6 enclosures, 10♀ and 6♂). Every enclosure contained 1 male and 3 female. These patterns had been existed for years. The results showed that females in lower crowding condition (217.1 ± 9.5 ug/g) had significantly higher fecal cortisol levels than those in higher crowding condition (177.2 ± 12.1 ug/g). Interestingly, crowding seemed have no effect on male fecal cortisol levels (148.1 ± 9.1 ug/g and 140.5 ± 13.3 ug/g, respectively). At both groups, cortisol was significantly lower in males than in females. These results showed that chronic crowding may affect stress status of captive forest musk deer. The captive environment should consider the space need for musk deer.

Tài liệu tham khảo

Dickens MJ, Delehanty DJ, Michael Romero L: Stress: an inevitable component of animal translocation. Biol Conserv 2010, 143(6):1329-1341. 10.1016/j.biocon.2010.02.032 Mason GJ: Species differences in responses to captivity: stress, welfare and the comparative method. Trends Ecol Evol 2010, 25(12):713-721. 10.1016/j.tree.2010.08.011 Manning A, Dawkins MS: An Introduction to Animal Behaviour. Cambridge: Cambridge University Press; 1998. Morgan KN, Tromborg CT: Sources of stress in captivity. Appl Anim Behav Sci 2007, 102(3–4):262-302. Mcewen BS: Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann NY Acad Sci 2004, 1032(1):1-7. 10.1196/annals.1314.001 Teixeira CP, De Azevedo CS, Mendl M, Cipreste CF, Young RJ: Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim Behav 2007, 73(1):1-13. 10.1016/j.anbehav.2006.06.002 Dhabhar FS, MCewen BS: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 1997, 11(4):286-306. 10.1006/brbi.1997.0508 Gouin JP, Hantsoo L, Kiecolt-Glaster JK: Immune dysregulation and chronic stress among older adults: a review. Neuroimmunomodulat 2008, 15(4–6):251-259. Green MJ: The distribution, status and conservation of the Himalayan musk deer ( Moschus chrysogaster ). Biol Conserv 1986, 35(4):347-375. 10.1016/0006-3207(86)90094-7 Green M: Scent-marking in the Himalayan musk deer ( Moschus chrysogaster ). J Zool Series B 1987, 1(4):721-737. Sheng HL, Liu ZX: The musk Deer in China. Shanghai: The Shanghai Scientific & Technical Publishers; 2007. Mason GJ, Cooper J, Clarebrough C: Frustrations of fur-farmed mink. Nature 2001, 410(6824):35-36. 10.1038/35065157 Sassenrath E: Increased adrenal responsiveness related to social stress in rhesus monkeys Horm. Behav 1970, 1(4):283-298. Mendoza SP, Coe CL, Lowere EL, Levine S: The physiological response to group formation in adult male squirrel monkeys. Psychoneuroendocrinology 1978, 3(3):221-229. Perret M, Predine J: Effects of long-term grouping on serum cortisol levels in Microcebus murinus ( Prosimii ). Horm Behav 1984, 18(3):346-358. 10.1016/0018-506X(84)90021-7 Li C, Jiang Z, Tang S, Zeng Y: Influence of enclosure size and animal density on fecal cortisol concentration and aggression in Pere David’s deer stags. Gen Comp Eendocr 2007, 151(2):202-209. 10.1016/j.ygcen.2007.01.014 Sheng HL, Xu HF, Lu HJ: Territory and habitat selection of forest musk deer. J East China Normal University (Natural Science) Album of Mammalian Ecology 1990, 14-19. Liu WH, Wang YQ, Li FR, Tang J, Yang Z: A primary study on breeding the musk deer by enclosure culture in Qinling Mountains. J Economic Anim 2010, 14(2):63-66. Miller GE, Chen E, Zhou ES: If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull 2007, 133(1):25. Rich EL, Romero LM: Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am J Physiol-Reg I 2005, 288(6):R1628-R1636. Cyr NE, Michael RL: Chronic stress in free-living European starlings reduces corticosterone concentrations and reproductive success. Gen Comp Endocr 2007, 151(1):82-89. 10.1016/j.ygcen.2006.12.003 Linklater W, Macdonald E, Flamand J, Czekala N: Declining and lower fecal corticoids are associated with distress, not acclimation to stress, during the translocation of African rhinoceros. Anim Conserv 2010, 13(1):104-111. 10.1111/j.1469-1795.2009.00308.x Wielebnowski NC, Fletchall N, Carlstead K, Busso JM, Brown JL: Noninvasive assessment of adrenal activity associated with husbandry and behavioral factors in the North American clouded leopard population. Zoo Biol 2002, 21(1):77-98. 10.1002/zoo.10005 Gaskin JH, Kitay JI: Adrenocortical function in the hamster: sex differences and effects of gonadal hormones. Endocrinology 1970, 87(4):779-786. 10.1210/endo-87-4-779 Mitsushima D, Masuda J, Kimura F: Sex differences in the stress-induced release of acetylcholine in the hippocampus and corticosterone from the adrenal cortex in rats. Neuroendocrinology 2003, 78(4):234-240. 10.1159/000073707 Kitay JI: Sex differences in adrenal cortical secretion in the rat. Endocrinology 1961, 68(5):818-824. 10.1210/endo-68-5-818 Handa RJ, Burgess LH, Kerr JE, O’Keefe JA: Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994, 28(4):464-476. 10.1006/hbeh.1994.1044 Yoshimura S, Sakamoto S, Kudo H, Sassa S, Kumai A, Okamoto R: Sex-differences in adrenocortical responsiveness during development in rats. Steroids 2003, 68(5):439-445. 10.1016/S0039-128X(03)00045-X Young EA, Altemus M, Parkisonb V, Shastry S: Effects of estrogen antagonists and agonists on the ACTH response to restraint stress in female rats. Neuropsychopharmacology 2001, 25(6):881-891. 10.1016/S0893-133X(01)00301-3 Kajantie E, Phillips DI: The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrino 2006, 31(2):151-178. 10.1016/j.psyneuen.2005.07.002 Kudielka BM, Buske-Kirschbaum A, Hellhammer DH, Kirschbaum C: HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrino 2004, 29(1):83-98. 10.1016/S0306-4530(02)00146-4 Handa RJ, MCGivern RF: Gender and Stress. Encyclopedia of Stress. San Diego: Academic Press; 1999:196-204. Albert D, Jonik R, Walsh M: Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations. Neurosci Biobehav Rev 1992, 16(2):177-192. 10.1016/S0149-7634(05)80179-4 Van Der Meij L, Buun AP, Salvador A: Contact with attractive women affects the release of cortisol in men. Horm Behav 2010, 58(3):501-505. 10.1016/j.yhbeh.2010.04.009 Dai WG, Yin SY: Stuy of general trend of death in captive Forest musk deer. J Chengdu Univ Sci Tech 1990, 5: 47-50. Huber S, Palme R, Arnold W: Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer ( Cervus elaphus ). Gen Comp Endocr 2003, 130(1):48-54. 10.1016/S0016-6480(02)00535-X Lang DM, Wang YH, Hu DF, Ge XF: Evaluation of the storage of fecal samples of captive forest musk deer for steroid analysis. Sichuan J Zool 2011, 30(3):357-361. Yu XJ, Hu DF, Jin XL, Ge XF, Yang LL, Zhao PP, Zhang Q: Non-invasive determination of fecal steroid hormones relating to conservation practice in giant panda ( Ailuropoda melanoleuca ). Anim Biol 2011, 61(3):335-347. 10.1163/157075511X584263