Effects of coupled heat sources in a triple power cycle: thermodynamic, economics and environment analysis and optimization

Mahdi Alibeigi1, Somayeh Davoodabadi Farahani1, Sina Amiri Hezaveh1
1Department of Mechanical Engineering, Arak University of Technology, Arāk, Iran

Tóm tắt

In this study, the thermodynamic and economic analysis for a triple combination including the Brayton cycle (GT), reheat cycle and an organic Rankine cycle, and Brayton cycle by coupling geothermal with biomass energy source and solar energy source is presented. Thermodynamically and economically, the effects of changing working fluid, air, CO, CO2, N2, and NO2 are studied for pressure ratio and air mass flow in the GT. The highest and lowest total thermal efficiency belong to CO and NO2 with values of 32.98% and 30.64%, respectively. The highest thermal efficiency and the lowest cost occur in the pressure ratio of 4 and 2, respectively. Ammonia and isopropanol have the highest and lowest combined power output cycles with organic Rankine cycle efficiency of 0.8654 and 0.9499, and amount of the overall thermal efficiency equal to 0.4196 and 0.4067, respectively. In addition, geothermal energy, solar energy, and biomass energy have been used to supply part of the energy required by the cycle. The solar tower is designed to supply the required heat from the sun. Optimization is performed based on thermal efficiency and cycle cost using a genetic algorithm. The solar thermal efficiency of summer was less than winter, and the cost of heat source in summer was more than winter because of the expense of geothermal in summer. Compared to the geothermal–solar cycle, the geothermal–biomass cycle has a lower cost and better performance. The environmental effects of the cycle have been investigated with different energy sources, and it has been found that the geothermal–solar cycle has less destructive ecological impacts.

Tài liệu tham khảo

Evans, A., Strezov, V., Evans, T.J.: Assessment of utility energy storage options for increased renewable energy penetration. Renew. Sustain. Energy Rev. 16(6), 4141–4147 (2012). https://doi.org/10.1016/j.rser.2012.03.048 Karkour, S., Ichisugi, Y., Abeynayaka, A., Itsubo, N.: External-cost estimation of electricity generation in G20 countries: case study using a global life-cycle impact-assessment method. Sustainability 12(5), 2002 (2020) Chen, H., Cong, T.N., Yang, W., Tan, C., Li, Y., Ding, Y.: Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009) Menéndez, J., Ordóñez, A., Álvarez, R., Loredo, J.: Energy from closed mines: underground energy storage and geothermal applications. Renew. Sustain. Energy Rev. 108, 498–512 (2019). https://doi.org/10.1016/j.rser.2019.04.007 Burer, M., Tanaka, K., Favrat, D., Yamada, K.: Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell–gas turbine combined cycle, heat pumps and chillers. Energy 28(6), 497–518 (2003). https://doi.org/10.1016/S0360-5442(02)00161-5 Al-Sulaiman, F.A., Hamdullahpur, F., Dincer, I.: Trigeneration: a comprehensive review based on prime movers. Int. J. Energy Res. 35(3), 233–258 (2011). https://doi.org/10.1002/er.1687 Wang, H., Peterson, R., Herron, T.: Design study of configurations on system COP for a combined ORC (organic Rankine cycle) and VCC (vapor compression cycle). Energy 36(8), 4809–4820 (2011). https://doi.org/10.1016/j.energy.2011.05.015 Carvalho, M., Serra, L.M., Lozano, M.A.: Optimal synthesis of trigeneration systems subject to environmental constraints. Energy 36(6), 3779–3790 (2011). https://doi.org/10.1016/j.energy.2010.09.023 Wu, C., Wang, S.-s, Li, J.: Exergoeconomic analysis and optimization of a combined supercritical carbon dioxide recompression Brayton/organic flash cycle for nuclear power plants. Energy Convers. Manag. 171, 936–52 (2018). https://doi.org/10.1016/j.enconman.2018.06.041 Khan, Y., Mishra, R.S.: Parametric (exergy-energy) analysis of parabolic trough solar collector-driven combined partial heating supercritical CO2 cycle and organic Rankine cycle. Energy Sources Part A Recov. Util. Environ. Effects (2020). https://doi.org/10.1080/15567036.2020.1788676 Habibi, H., Zoghi, M., Chitsaz, A., Shamsaiee, M.: Thermo-economic performance evaluation and multi-objective optimization of a screw expander-based cascade Rankine cycle integrated with parabolic trough solar collector. Appl. Therm. Eng. 180, 115827 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115827 Tempesti, D., Fiaschi, D.: Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy. Energy 58, 45–51 (2013). https://doi.org/10.1016/j.energy.2013.01.058 Mohammadkhani, F., Shokati, N., Mahmoudi, S., Yari, M., Rosen, M.: Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles. Energy 65, 533–543 (2014). https://doi.org/10.1016/j.energy.2013.11.002 Liu, B.-T., Chien, K.-H., Wang, C.-C.: Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29(8), 1207–1217 (2004). https://doi.org/10.1016/j.energy.2004.01.004 Mikielewicz, D., Mikielewicz, J.: A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl. Therm. Eng. 30(16), 2357–2362 (2010). https://doi.org/10.1016/j.applthermaleng.2010.05.035 Dai, Y., Wang, J., Gao, L.: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers. Manag. 50(3), 576–582 (2009). https://doi.org/10.1016/j.enconman.2008.10.018 Sirignano, W., Liu, F.: Performance increases for gas-turbine engines through combustion inside the turbine. J. Propul. Power 15(1), 111–118 (1999). https://doi.org/10.2514/2.5398 Abd El-Maksoud, R.M.: Gas turbine with heating during the expansion in the stator blades. Energy Convers. Manag. 78, 219–224 (2014). https://doi.org/10.1016/j.enconman.2013.10.054 Boehm, R.F., Yang, H., Yan, J.: Handbook of Clean Energy Systems. Wiley (2015) Farahani, S.D., Alibeigi, M.: Investigation of power generated from a PVT-TEG system in Iranian cities. J. Solar Energy Res. 5(4), 603–16 (2020). https://doi.org/10.22059/jser.2020.308162.1170 Farahani, S.D., Sarlak, M.A., Alibeigi, M.: Thermal analysis of PVT-HEX system: electricity efficiency and air conditioning system. J. Solar Energy Res. 6(1), 625–33 (2021). https://doi.org/10.22059/jser.2020.310682.1174 Reyes-Belmonte, M.A., Sebastián, A., González-Aguilar, J., Romero, M.: Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant. In: AIP conference proceedings, AIP Publishing LLC (2017) Blanco, M., Santigosa, L.R.: Advances in Concentrating Solar Thermal Research and Technology. Woodhead Publishing (2016) Neises, T., Turchi, C.: A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications. Energy Procedia. 49, 1187–1196 (2014). https://doi.org/10.1016/j.egypro.2014.03.128 Turchi, C.S., Ma, Z., Neises, T.W., Wagner, M.J.: Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J. Solar Energy Eng. (2013). https://doi.org/10.1115/1.4024030 Stein, W., Buck, R.: Advanced power cycles for concentrated solar power. Sol. Energy 152, 91–105 (2017). https://doi.org/10.1016/j.solener.2017.04.054 Pramanik, S., Ravikrishna, R.: A review of concentrated solar power hybrid technologies. Appl. Therm. Eng. 127, 602–637 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.038 Detwiler, R.L., Roberts, J.J., Ralph, W., Bonner, B.P.: Modeling fluid flow and electrical resistivity in fractured geothermal reservoir rocks: Lawrence Livermore National Lab (LLNL), Livermore, CA (United States) (2003) Factsheets on geothermal electricity. European Geothermal Energy council (EGEC). 12 (2014) Lentz, Á., Almanza, R.: Parabolic troughs to increase the geothermal wells flow enthalpy. Sol. Energy 80(10), 1290–1295 (2006). https://doi.org/10.1016/j.solener.2006.04.010 Boyaghchi, F.A., Heidarnejad, P.: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. Energy Convers. Manag. 97, 224–234 (2015). https://doi.org/10.1016/j.enconman.2015.03.036 Chen, L., Feng, H., Ge, Y.: Power and efficiency optimization for open combined regenerative Brayton and inverse Brayton cycles with regeneration before the inverse cycle. Entropy 22(6), 677 (2020). https://doi.org/10.3390/e22060677 Mohammadi, K., Ellingwood, K., Powell, K.: A novel triple power cycle featuring a gas turbine cycle with supercritical carbon dioxide and organic Rankine cycles: thermoeconomic analysis and optimization. Energy Convers. Manag. 220, 113123 (2020). https://doi.org/10.1016/j.enconman.2020.113123 Bademlioglu, A.H., Canbolat, A.S., Kaynakli, O.: Multi-objective optimization of parameters affecting organic rankine cycle performance characteristics with Taguchi-Grey relational analysis. Renew. Sustain. Energy Rev. 117, 109483 (2020). https://doi.org/10.1016/j.rser.2019.109483 Rabbani, M., Ratlamwala, T., Dincer, I.: Transient energy and exergy analyses of a solar based integrated system. J. Solar Energy Eng. 137(1), 011010 (2015) Shahin, M.S., Orhan, M.F., Uygul, F.: Thermodynamic analysis of parabolic trough and heliostat field solar collectors integrated with a Rankine cycle for cogeneration of electricity and heat. Sol. Energy 136, 183–196 (2016) Shaaban, S.: Analysis of an integrated solar combined cycle with steam and organic rankine cycles as bottoming cycles. Energy Convers. Manag. 126, 1003–1012 (2016) Sachdeva, J., Singh, O.: Thermodynamic analysis of solar powered triple combined brayton, rankine and organic rankine cycle for carbon free power. Renew. Energy 139, 765–80 (2019). https://doi.org/10.1016/j.renene.2019.02.128 Bhatt, B., Thakore, S.B.: Stoichiometry. Tata McGraw-Hill Education (2010) Kazemi, H., Ehyaei, M.: Energy, exergy, and economic analysis of a geothermal power plant. Adv. Geo-Energy Res. 2(2), 190–209 (2018). https://doi.org/10.26804/ager.2018.02.07 Noorollahi, Y., Ghasemi, G., Kowsary, F., Roumi, S., Jalilinasrabady, S.: Modelling of heat supply for natural gas pressure reduction station using geothermal energy. Int. J. Sustain. Energy 38(8), 773–793 (2019). https://doi.org/10.1080/14786451.2019.1585434 Li, X., Kong, W., Wang, Z., Chang, C., Bai, F.: Thermal model and thermodynamic performance of molten salt cavity receiver. Renew. Energy 35(5), 981–988 (2010) Benammar, S., Khellaf, A., Mohammedi, K.: Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Convers. Manag. 78, 923–930 (2014). https://doi.org/10.1016/j.enconman.2013.08.066 Hezaveh, S.A., Farahani, S.D., Alibeigi, M.: Technical-economic analysis of the organic rankine cycle with different energy sources. J. Solar Energy Res. 5(1), 362–373 (2020). https://doi.org/10.22059/JSER.2020.300111.1148 Mehmood, S., Reddy, B.V., Rosen, M.A.: Energy analysis of a biomass co-firing based pulverized coal power generation system. Sustainability 4(4), 462–490 (2012). https://doi.org/10.3390/su4040462 Mann, M.K., Spath, P.L.: Life cycle assessment of a biomass gasification combined-cycle power system: national renewable Energy Lab., Golden, CO (US) (1997) Darrow, K., Tidball, R., Wang, J., Hampson, A.: Catalog of CHP Technologies, pp. 5–6. US Environmental Protection Agency, Washington (2015) Wang, X., Yang, Y., Zheng, Y., Dai, Y.: Exergy and exergoeconomic analyses of a supercritical CO2 cycle for a cogeneration application. Energy 119, 971–982 (2017). https://doi.org/10.1016/j.energy.2016.11.044 Obidziñski, S.A.: Pelletization of biomass waste with potato pulp content. Int. Agrophys. 28(1), 85 (2014). https://doi.org/10.2478/intag-2013-0030 Kolb, G.J., Ho, C.K., Mancini, T.R., Gary, J.A.: Power tower technology roadmap and cost reduction plan. SAND2011-2419, Sandia National Laboratories, Albuquerque, NM. (2011) https://doi.org/10.2172/1011644 Fritsch, A., Frantz, C., Uhlig, R.: Techno-economic analysis of solar thermal power plants using liquid sodium as heat transfer fluid. Sol. Energy 177, 155–162 (2019). https://doi.org/10.1016/j.solener.2018.10.005 Ghorbani, N., Aghahosseini, A., Breyer, C.: Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050–Achieving zero greenhouse gas emissions and overcoming the water crisis. Renew. Energy 146, 125–148 (2020). https://doi.org/10.1016/j.renene.2019.06.079 Charbonneau, P., Knapp, B.: A user's guide to PIKAIA 1.0. (1995)