Effects of compressive stress on the nonlinear electromechanical behavior of ferroelectric ceramics
Tóm tắt
The effects of compressive stress parallel and perpendicular to the polar axis of PZT ceramics on the nonlinear electromechanical behavior of the materials has been experimentally studied. A domain-switching model that divides each 180° switching to two successive 90° switching is proposed to explain these effects. In the case of stress parallel to the polar axis, domain switching in the ceramics is approximately axisymmetric and can be simulated by an analytical model. While in the case of stress perpendicular to the polar axis, domain switching is three-dimensional and cannot be simplified. The simulated results that match the experiments well show the validity of the proposed domain-switching model.
Tài liệu tham khảo
Xu, Y., Ferroelectric Materials And Their Applications, Amsterdam: North-Holland, 1991.
Jaffe, B., Cook, W. R., Jaffe, H., Piezoelectric Ceramics, London-New York: Academic, 1971.
Ikeda, T., Fundamentals of Piezoelectricity, Oxford: Oxford University Press, 1990
Mattiat, O. E., Ultrasonic Transducer Materials, New York-London: Plenum, 1971.
Krueger, H. H. A., Stress sensitivity of piezoelectric ceramics: Pt. I. Sensitivity to compressive stress parallel to the polar axis, J. Acoust. Soc. Am., 1967, 42: 636–645.
Krueger, H. H. A., Stress sensitivity of piezoelectric ceramics: Pt. II. Heat treatment, J. Acoust. Soc. Am., 1968, 43: 576–582.
Krueger, H. H. A., Stress sensitivity of piezoelectric ceramics: Pt. III. Sensitivity to compressive stress perpendicular to the polar axis, J. Acoust. Soc. Am., 1968, 43: 583–591.
Brown, R. F., Effect of two-dimensional mechanical stress on the dielectric properties of ceramic barium titan-ate and lead zirconate titanate, Can. J. Phys., 1961, 39: 741–753.
Brown, R. F., McMahon, G. W., Material constants of ferroelectric ceramics at high pressure, Can. J. Phys., 1962, 40: 672–674.
Lynch, C. S., The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater., 1996, 44(10): 4137–4148.
Fang, D. N., Li, C. Q., Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, J. Mater. Sci., 1999, 34: 4001–4010.
Li, F. X., Fang, D. N., Feng, X., Effect of lateral pressure on the non-linear behaviour of PZT ceramics, Chin. Phys. Lett., 2003, 20 (12): 2250–2251.
Hwang, S. C., Lynch, C. S., McMeeking, R. M., Ferroelectric/ferroelastic interactions and a polarization switching model, Acta Metall. Mater., 1995, 43(5): 2073–2084.
Lu, W., Fang, D. N., Li, C. Q., Hwang, K.C., Nonlinear electric-mechanical behavior and micormechanics modeling of ferroelectric domain evolution, Acta Mater., 1999, 47: 2913–2926.
Chen, X., Fang, D. N., Hwang, K. C., Micromechanics simulation of ferroelectric polarization switching, Acta Mater., 1997, 45(8): 3181–3189.
Hwang, S. C., Huber, J. E., McMeeking, R. M. et al., The simulation of switching in polycrystalline ferroelectric ceramics, J. Appl. Phys., 1998, 83(3): 1530–1540.
Chen, W., Lynch, C. S., A micro-electro-mechanical model for polarization switching of ferroelectric materials, Acta Mater., 1998, 46(15): 5303–5311.
Huo, Y. Z., Jiang, Q., Modeling of domain switching in ferroelectric ceramics: an example, Int. J. Solids Struct., 1998, 35 (13): 1339–1353.
Li, S. P., Bhalla, A. S., Newnham, R. E. et al., 90-degree domain reversal in Pb(ZrxTi1-x )O3 ceramics, J. Mater. Sci., 1994, 29: 1290.