Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption
Tóm tắt
Từ khóa
Tài liệu tham khảo
U.S. Environmental Protection Agency (EPA) Toxicological review of hexavalent chromium. National Center for Environmental Assessment, Office of Research and Development, Washington. (1998)
National Toxicology Program (NTP) NTP technical report on the toxicology and carcinogenesis studies of sodium dichromate dihydrate (CAS No. 7789-12-0) in F344/N rats and B6C3F1 mice (Drinking water studies). NTP TR 546, NIH Publication No. 07-5887: National Toxicology Program, National Institutes of Health, U.S. Department of Health and Human Services (2008). http://ntp.niehs.nih.gov/files/546_web_FINAL.pdf
Office of Environmental Health Hazard Assessment (OEHHA) Draft Public Health Goal for Hexavalent Chromium in Drinking Water: Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (2009).ss www.oehha.ca.gov/water/phg/pdf/Cr6PHGdraft082009.pdf
He Y (2003) Chromate reduction and immobilization under high pH and high ionic strength. Ph.D. Dissertation, Ohio State University
He YT, Chen C, Traina SJ (2004) Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions. Environ Sci Technol 38:5535–5539
Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Haz Mater 137:762–811
White AF, Peterson ML (1996) Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides. Geochim Cosmochim Acta 60:3799–3814
Kendelewicz T, Liu P (2000) Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4 (111) surfaces. Surf Sci 469:144–163
Grossl PR, Eick MJ, Sparks DL, Goldberg S, Ainsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2.Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31(2):321–326
Rai D, Sass BM, Moore DA (1987) Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg Chem 26:345–349
Sass BM, Rai D (1987) Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg Chem 26(14):2228–2232
He YT, Traina SJ (2005) Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation. Environ Sci Technol 39:4499–4504
Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution. Marcel Dekker Inc, New York, p 6
Walther JV (2009) Essentials of Geochemistry. Jones & Bartlett Learning; 2 edition. Sudbury, MA
Kendelewicz T, Liu P, Doyle C, Brown GE Jr, Nelson Chambers ES (1999) S. X-ray absorption and photoemission study of the adsorption of aqueous Cr(VI) on single crystal hematite and magnetite surfaces. Surf Sci 424:219–231
Peterson ML, Brown GE Jr, Parks GA (1996) Direct XAFS evidence for heterogeneous redox reaction at the aqueous chromium/magnetite interface. Colloid Surface A 107:77–88
Nollet LML, De Gelder LSP (2000) Handbook of water analysis. CRC Press, Marcel Dekker, Inc., New York, p 201
Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88
Kosmulski M (2009) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interf Sci 152:14–25
Regazzoni AE, Blesa MA, Maroto AJ (1983) Interfacial properties of zirconium dioxide and magnetite in water. Colloid Interf Sci 91:560–570
Salazar-Camacho C, Villalobos M, Rivas-Sanchez M, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutierrez-Reuiz M (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233–245
Catalette H, Dumonceau J, Ollar PJ (1998) Sorption of cesium, barium and europium on magnetite. Cont. Hydrol. 35:151–159
Plaza R, Arias J, Espın M, Jiménez M, Delgado A (2002) Aging effects in the electrokinetics of colloidal iron oxides. J Colloid Interf Sci 245:86–90
Tombácz E, Illés E, Majzik A, Hajdú A, Rideg N, Szekeres M (2007) Aging in the inorganic nanoworld: example of magnetite nanoparticles in aqueous medium. Croat Chem Acta 80:503–515
Kosmulski MJ (2011) The pH-dependent surface charging and points of zero charge: V. Update. J Colloid Interf Sci 353:1–15
Milonjić S, Kopečni M, Ilić Z (1983) The point of zero charge and adsorption properties of natural magnetite. J Radioanal Nuc Chem 78:15–24
Parsons JG, Hernandez J, Gonzalez CM, Gardea-Torresdey JL (2014) Sorption of Cr(III) and Cr(VI) to high and low pressure synthetic nano-magnetite (Fe3O4) particles. Chem Eng J 254:171–180
Tokunaga TK, Wan J, Firestone MK, Hazen TC, Schwartz E, Sutton SR, Newville M (2011) Chromium diffusion and reduction in soil aggregates. Environ Sci Technol 35:3169–3174
Gustafsson JP (2007) Visual MINTEQ. Visual Minteq. Version 3.0. Division of land and water resources, Royal Institute of Technology. Stockholm. http://www.lwr.kth.se/English/OurSoftware/vminteq/index.htm
Washburn EW, West CJ (1929) International critical tables of numerical data, physics, chemistry and technology; National Academies.7
Gallios GP, Vaclavikova M (2008) Removal of Chromium (VI) from Water Streams: a Thermodynamic Study. Environ Chem Lett 6:235–240
Hayes KF, Redden G, Ela W, Leckie JOJ (1991) Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. J Colloid Interf Sci 142:448–469
Fendorf SE, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31:315–320
Peak D, Ford RG, Sparks DL (1999) An in Situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J Colloid Interf Sci 218:289–299
Wijnja H, Schulthess CP (2000) Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr) oxide surfaces. J Colloid Interf Sci 229:286–297
Zhang PC, Sparks DL (1990) Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. Soil Sci Soc Am J 54:1266–1273
Chambers S, Brown, Jr. GE, Amonette J, Dixon D, Joyce S, Rustad J (1997) Molecular-level processes governing the interaction of contaminants with iron and manganese oxides. Pacific Northwest National Laboratory. 67Chambers S, Brown, Jr. GE, Amonette J, Dixon D, Joyce S, Rustad J (1997) Molecular-level processes governing the interaction of contaminants with iron and manganese oxides. Pacific Northwest National Laboratory. 67
Jung Y, Choi J, Lee W (2007) Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium. Chemosphere 68:1968–1975
Peterson ML, Brown GE Jr, Parks GA, Stein CL (1997) Differential redox and sorption of cr (iii/vi) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim Cosmochim Acta 61:3399–3412
Brown GE Jr, Henrich VE, Casey WH, Clark DL, Eggleston C, Felmy A, Goodman DW, Grätzel M, Maciel G, McCarthy MI (1999) Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem Rev 99:77–174
Chowdhury SR, Yanful EK (2010) Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J Environ Manag 91:2238–2247
Charlet L, Manceau A (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide/water interface. II Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide. J Colloid Interf Sci 148:443–458
Manceau A, Charlet L (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J Colloid Interf Sci 148:425–442
Milton C, Appleman DE, Appleman MH, Chao ECT, Cuttitta F, Dinnin JI, Dwornik EJ, Ingramand BL, Rose BL, Jr Ingramand HJ (1976) Merumite, a complex assemblage of chromium minerals from Guyana. US Geol Suns Prof Pap 887:1–29
Grolimund D, Trainor TP, Fitts JP, Kendelewicz T, Liu P, Chambers SA, Brown GE Jr (1999) Identification of Cr species at the aqueous solution-hematite interface after Cr(VI)-Cr(III) reduction using GI-XAFS and Cr L-edge NEXAFS. J Synchrotr 6:612–614
Lützenkirchen J, Preočanin T, Kovačević D, Tomišić V, Lövgren L, Kallay N (2012) Potentiometric titrations as a tool for surface charge determination. Croat Chem Acta 85:391–417
Webb S (2005) SIXpack: A graphical user interface for XAS analysis using IFEFFIT. Physica Scripta 1011
Arai Y, Livi K (2012) Under assessed phosphorus fixation mechanisms in soil sand fractions. Geoderma 192:422–429
Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Miner 4:317–339