Effects of annealing time on the structure and optical properties of ZnAl2O4/ZnO prepared via citrate sol-gel process
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cornu, 2014, Luminescence switch of Mn-doped ZnAl2O4 powder with temperature, J. Matter. Chem. C, 2, 9512, 10.1039/C4TC01425A
Ha, 2009, Some physical properties of ZnAl2O4:Cr3+ (Co2+) powders prepared by hydrothermal method, J. Phys. Conf. Ser., 187, 012053, 10.1088/1742-6596/187/1/012053
Stringhini, 2014, Synthesis of porous zinc aluminate spinel (ZnAl2O4) by metal-chitosan complexation method, J. Alloys Compd., 588, 305, 10.1016/j.jallcom.2013.11.078
Pathak, 2014, Photoluminescence and EPR studies on Fe3+ doped ZnAl2O4: an evidence for local site swapping of Fe3+ and formation of inverse and normal phase, Dalton Trans., 43, 9313, 10.1039/c4dt00741g
Roesky, 1999, An improved synthesis method for indenes and styrenes by use of a ZnO/Al2O3 spinel catalyst, Appl. Catal. A Gen., 176, 213, 10.1016/S0926-860X(98)00246-4
Strek, 1998, Preparation and emission spectra of Eu(III) in nanostructured γ-alumina, Spectrochim. Acta A, 54, 2121, 10.1016/S1386-1425(98)00128-0
Foletto, 2012, Synthesis of ZnAl2O4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process, Microporous Mesoporous Mater., 163, 29, 10.1016/j.micromeso.2012.06.039
Wang, 2015, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process, Sci. Rep., 5, 12849, 10.1038/srep12849
Tsai, 2010, Luminescent and structural properties of manganese-doped zinc aluminate spinel nanocrystals, Thin Solid Films, 518, e9, 10.1016/j.tsf.2010.03.130
Wang, 2005, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process, J. Alloys Compd., 394, 255, 10.1016/j.jallcom.2004.07.088
Parya, 2010, Co-precipitated ZnAl2O4 spinel precursor as potential sintering aid for pure alumina system, Ceram. Int., 36, 1211, 10.1016/j.ceramint.2010.01.013
Chen, 2004, Porous ZnAl2O4 synthesized by a modified citrate technique, J. Alloys Comp., 376, 257, 10.1016/j.jallcom.2004.01.013
Zawadzki, 2006, Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl2O4), Solid State Sci., 8, 14, 10.1016/j.solidstatesciences.2005.08.006
Zou, 2006, Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor, Chem. Mater., 18, 5852, 10.1021/cm0606124
Zhu, 2011, Facile solution synthesis and characterization of porous cubic-shaped superstructure of ZnAl2O4, Mater. Lett., 65, 194, 10.1016/j.matlet.2010.09.085
Tsai, 2013, Luminescent and structural properties of manganese-doped zinc aluminate spinel nanocrystals, Ceram. Int., 39, 3691, 10.1016/j.ceramint.2012.10.201
Gama, 2009, Synthesis and characterization of the NiAl2O4 CoAl2O4, and ZnAl2O4 spinels by the polymeric precursors method, J. Alloy Comp., 483, 453, 10.1016/j.jallcom.2008.08.111
Cheng, 2006, Porous ZnAl2O4 spinel nanorods doped with Eu3+: synthesis and photoluminescence, Nanotechnology, 17, 2982, 10.1088/0957-4484/17/12/027
Motloung, 2014, Effect of annealing temperature on structural and optical properties of ZnAl2O4:1.5% Pb2+ nanocrystals synthesized via sol-gel reaction, J. Sol-Gel Sci. Technol., 70, 422, 10.1007/s10971-014-3302-z
Koao, 2016, Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method, Adv. Mater. Lett., 7, 529, 10.5185/amlett.2016.6128
Aznan, 2011, Quantum size effect in ZnO nanoparticles via mechanical milling, J. Nanomater., 2012, 1, 10.1155/2012/439010
Battiston, 2014, Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst, Mater. Res., 17, 734, 10.1590/S1516-14392014005000073
Yang, 2011, High-temperature steam reforming of methanol over ZnO-Al2O3 catalysts, Appl. Catal. B: Environ., 101, 409, 10.1016/j.apcatb.2010.10.010
Cullity, 2001
Koao, 2014, Effect of Eu3+ on the structure, morphology and optical properties of flower-like ZnO synthesized using chemical bath deposition, J. Lumin., 147, 85, 10.1016/j.jlumin.2013.10.045
Miron, 2012, Hydrothermal synthesis of ZnAl2O4:Cr3+ nano-crystals, Optoelect. Adv. Mater., 6, 673
Iaiche, 2015, ZnAl2O4/ZnO nanocomposite films studied by X-ray diffraction FTIR, and X-ray photoelectron spectroscopy, J. Spectrosc., 2015, 1, 10.1155/2015/836859
Koao, 2016, Annealed Ce3+-doped ZnO flower-like morphology synthesized by chemical bath deposition method, Physica B, 480, 53, 10.1016/j.physb.2015.09.010
Levy, 2006, Synthesis of nanophased metal oxides in supercritical water: catalysts for biomass conversion, Int. J. Appl. Ceram. Technol., 3, 337, 10.1111/j.1744-7402.2006.02100.x
Zhang, 2014, Photocatalytic degradation and inactivation of Escherichia coli by ZnAl2O4/ZnO with heteronanostructures, Trans. Nonferrous Met. Soc. China, 24, 743, 10.1016/S1003-6326(14)63120-4
Da Silva, 2008, Al3+ environments in nanostructured ZnAl2O4 and their effects on the luminescence properties, J. Nanosci. Nano- Technol., 8, 5690, 10.1166/jnn.2008.218
Da Silva, 2009, Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, J. Sol-Gel Sci. Technol., 49, 101, 10.1007/s10971-008-1833-x
Willander, 2009, Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications, New J. Phys., 11, 125020, 10.1088/1367-2630/11/12/125020
Melato, 2017, Effect of annealing at different time intervals on the structure, morphology and luminescent properties of MgAl2O4:0.3% In3+ nanophosphor prepared by citrate sol-gel method, Opt. Mater., 66, 319, 10.1016/j.optmat.2017.02.034
Amiruddin, 2014, Enhanced visible emission from vertically aligned ZnO nanostructures by aqueous chemical growth process, J. Lumin., 55, 149, 10.1016/j.jlumin.2014.06.038
Mehmood, 2015, Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria, Int. J. Nanomed., 10, 4521