Ảnh hưởng của stress kiềm đến sự phát triển, axit amin tự do và chuyển hóa carbohydrate ở cỏ Kentucky (Poa pratensis)

Ecotoxicology - Tập 21 - Trang 1911-1918 - 2012
Pingping Zhang1, Jinmin Fu1, Longxing Hu1
1Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, People’s Republic of China

Tóm tắt

Sự kiềm hóa đất là một trong những yếu tố môi trường tiêu cực nổi bật nhất hạn chế sự phát triển của thực vật, trong khi stress kiềm ảnh hưởng đến quá trình chuyển hóa axit amin và carbohydrate. Mục tiêu của nghiên cứu này là điều tra các ảnh hưởng của stress kiềm đến sự phát triển, chuyển hóa axit amin và carbohydrate ở cỏ Kentucky (Poa pratensis). Các cây cỏ 70 ngày tuổi đã được đưa ra 4 mức pH: 6.0 (đối chứng), 8.0 (thấp), 9.4 (vừa) và 10.3 (nặng) trong 7 ngày. Stress kiềm từ mức vừa đến nặng (pH >9.4) đã gây ra sự suy giảm đáng kể về chất lượng cỏ và tỷ lệ tăng trưởng ở cỏ Kentucky. Protein hòa tan không thay đổi ở chồi, nhưng giảm ở rễ khi pH tăng. Mức axit amin được giữ ở mức tương đương mức đối chứng sau 4 ngày điều trị (DAT) ở chồi, nhưng tăng hơn ở 7 DAT, khi cây bị stress kiềm nặng (pH 10.3). Các cây bị stress kiềm có mức độ tinh bột, carbohydrate hòa tan trong nước và hàm lượng sucrose cao hơn, nhưng mức fructose và glucose thấp hơn. Fructan và tổng carbohydrate không cấu trúc (TNC) tăng lên ở 4 DAT và giảm ở 7 DAT cho các cây bị stress kiềm. Kết quả này cho thấy sự giảm xuống của fructose và glucose góp phần vào sự suy giảm phát triển dưới stress kiềm, trong khi sự tăng lên của axit amin, sucrose và dạng carbohydrate dự trữ (fructan, tinh bột) có thể là cơ chế thích ứng ở cỏ Kentucky dưới stress kiềm.

Từ khóa

#stress kiềm #cỏ Kentucky #chuyển hóa axit amin #carbohydrate #pH

Tài liệu tham khảo

Ashraf M, Harris PC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16 Barnett NM, Naylor A (1966) Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiol 41:1222–1230 Bie Z (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Sci Hortic 99:215–224 Bohnert HJ, Su H, Shen B (1999) Molecular mechanisms of salinity tolerance. In: Shinozaki K, Yamaguchi-Shinozaki Y (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. Landes Bioscience, Austin, pp 29–60 Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1158–1203 Cardarelli M, Rouphae Y, Rea E, Colla G (2010) Mitigation of alkaline stress by arbuscular mycorrhiza in zucchini plants grown under mineral and organic fertilization. J Plant Nutr Soil Sci 173:778–787 Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503 Clark GT, Zuther E, Outred HA, McManus MT, Heyer AG (2004) Tissue-specific changes in remobilisation of fructan in the xerophytic tussock species Festuca novae-zelandiae in response to a water deficit. Funct Plant Biol 31:377–389 De Gara L, De Pinto MC, Moliterni V, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249 Delory GE, King EJ (1945) A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem J 39:245 Díaz P, Borsani O, Márquez A, Monza J (2005) Nitrogen metabolism in relation to drought stress responses in cultivated and model Lotus species. Lotus Newslett 35:83–92 Downs CG, Somerfield SD, Davey MC (1997) Cytokinin treatment delays senescence but not sucrose loss in harvested broccoli. Postharvest Biol Technol 11:93–100 Dubey R (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 859–875 Fageria NK, Baligar VC (1999) Growth and nutrient concentrations of common bean, lowland rice, corn, soybean, and wheat at different soil ph on an inceptisol. J Plant Nutr 22:1495–1507 Farooq M, Wahid A, Lee D, Ito O, Siddque K (2009) Advance in drought resistance of rice. Crit Rev Plant Sci 28:199–217 Fu J, Dernoeden PH (2008) Carbohydrate metabolism in creeping bentgrass as influenced by two summer irrigation practices. J Am Soc Hortic Sci 133:678–683 Gilbert GA, Gadush MV, Wilson C, Madore MA (1998) Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress. J Exp Bot 49:107–114 Gill P, Sharma A, Singh P, Bhullar S (2001) Effect of various abiotic stresses on growth, soluble sugars and water relationships of sorghum seedlings grown in light and darkness. Bulg J Plant Physiol 27:72–84 Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190 Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stat 347:1–32 Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at Swiss treeline. Oikos 98:361–374 Hsiao TC (1973) Plant responses to water deficit. Ann Rev Plant Physiol 24:519–570 Huang B, Liu L (2009) Physiological responses of creeping bentgrass to heat stress affected by phosphonate fungicide application. Intl Turfgrass Soc Res J 11:799–806 Kafi M, Stewart W, Borland A (2003) Carbohydrate and proline contents in leaves, roots, and apices of salt-tolerant and salt-sensitive wheat cultivars. Russ J Plant Physiol 50:155–162 Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487 Kerkeb L, Krmer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716 Klotke J, Kopka J, Gatzke N, Heyer AG (2004) Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation evidence for a role of raffinose in cold acclimation. Plant Cell Environ 27:1395–1404 Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the ‘sink-regulation’ of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313 Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26 Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330 Li R, Volenec JJ, Joern BC, Cunningham SM (1996) Seasonal changes in nonstructural carbohydrates, protein, and macronutrients in roots of alfalfa, red clover, sweet clover, and birdsfoot trifoil. Crop Sci 36:617–623 Li Y, Shi D, Li Y, Wang Y (2002) Effect of complex alkali-saline stress on sorghum seedlings. Rain Fed Crops 22:41–45 Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023 Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500 Marcum K (2008) Handbook of turfgrass management and physiology. CRC Press, Boca Raton Martino CD, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463 Mayer R, Cherry J, Rhodes D (1990) Effects of heat shock on amino acid metabolism of cowpea cells. Plant Physiol 94:796–810 Mothes K (1940) Zur biosythese der säureamide asparagin und glutamin. Planta 30:726–756 Paradiso A, Cecchini C, De Gara L, D’Egidio MG (2006) Functional, antioxidant and rheological properties of meal from immature durum wheat. J Cereal Sci 43:216–222 Rai VK (2002) Role of amino acids in plant responses to stresses. Biol Plant 45:481–487 Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709 Sasaki H, Ichimura K, Oda M (1996) Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Ann Bot 78:365 Shi D, Sheng Y (2005) Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54:8–21 Shi D, Zhao K (1997) Effects of sodium chloride and carbonate on growth of puccinellia tenuiflora and on present state of mineral elements in nutrient solution. Acta Pratacult Sinica 6:51–61 Smith D (1972) Carbohydrate reserves of grasses. Academic Press, London Stoop JMH, Pharr DM (1994) Growth substrate and nutrient salt environment alter mannitol-hexose partitioning in celery petioles. J Am Soc Hortic Sci 119:237 Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469 Unno H, Yamamoto S (2004) Effect of salt stress on water soluble carbohydrates in leaf sheaths of forage grasses. Grassland Sci 50:300–303 Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18 Yang J, Zhang J, Wang Z, Zhu Q, Liu L (2004) Activities of fructan-and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220:331–343