Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của việc bổ sung nitric oxide bên ngoài lên sự phân bố dòng điện tử quang hợp trong lá Rumex K-1 dưới sự sốc thẩm thấu
Tóm tắt
Sự phân bổ dòng điện tử quang hợp, độ dẫn khí, và hoạt động của các enzym chính tham gia vào quá trình quang hợp đã được nghiên cứu trong lá Rumex K-1 nhằm hiểu rõ hơn về vai trò của nitric oxide (NO) trong việc bảo vệ quang dưới áp lực thẩm thấu do polyethylene glycol. Trao đổi khí và huỳnh quang diệp lục được đo đồng thời với một hệ thống quang hợp xách tay được tích hợp với máy đo huỳnh quang điều chế xung để tính toán sự phân bổ của các dòng điện tử quang hợp. Áp lực thẩm thấu làm giảm độ dẫn khí, sự đồng hóa carbon quang hợp và sự đồng hóa nitrat, đồng thời tăng phản ứng Mehler và dẫn đến hiện tượng ức chế quang. Việc bổ sung NO bên ngoài làm tăng độ dẫn khí, tỷ lệ quang hợp, hoạt động của glutamine synthetase và nitrate reductase, đồng thời làm giảm phản ứng Mehler và hiện tượng ức chế quang. Những kết quả này cho thấy áp lực thẩm thấu làm giảm sự đồng hóa CO2, giảm thiểu việc sử dụng năng lượng kích thích thông qua sự đồng hóa CO2, gây ra ức chế quang đáng kể. Cải thiện độ dẫn khí bằng cách bổ sung NO bên ngoài đã tăng cường việc sử dụng năng lượng kích thích thông qua sự đồng hóa CO2. Kết quả là, ít năng lượng kích thích hơn được phân bổ cho phản ứng Mehler, dẫn đến giảm sản xuất các loại oxy phản ứng thông qua con đường này. Chúng tôi giả định rằng phản ứng Mehler sẽ không được thúc đẩy trừ khi quá trình quang hợp và chuyển hóa nitơ bị ức chế rõ rệt.
Từ khóa
#Nitric oxide #quang hợp #áp lực thẩm thấu #phản ứng Mehler #dẫn khíTài liệu tham khảo
Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639, 1999.
Backhausen, J.E., Emmerlich, A., Holtgrefe, S. et al.: Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. — Planta 207: 105–114, 1998.
Barry, O., Murray, B., Kate, M. et al.: Too many photos: photorespiration, photoinhibition and photooxidation. — Trends Plant Sci. 2: 119–121, 1997.
Biehler, K., Fock, H.: Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. — Plant Physiol. 112: 265–272, 1996.
Caba, J.M., Lluch, C., Ligero, F.: Distribution of nitrate reductase activity in Vicia faba: effect of nitrate and plant genotype. — Physiol. Plant. 93: 667–672, 1995.
Cantrel, C., Vazquez, T., Puyaubert, J. et al.: Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. — New Phytol. 189: 415–427, 2011.
Chen, H.-X., Gao, H.-Y., An, S.-Z. et al.: Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. — Photosynthetica 42: 117–122, 2004.
Cui, J.-X., Zhou, Y.-H., Ding, J.-G. et al.: Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. — Plant Cell Environ. 34: 347–358, 2011.
Demmig-Adams, B., Adams, W.W.,III: Photoprotection and other responses of plants to high light stress. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626, 1992.
Desikan, R., Griffiths, R., Hancock, J. et al.: A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. — Proc. Nat. Acad. Sci. USA 99: 16314–16318, 2002.
Driever, S.M., Baker, N.R.: The water-water cycle in leaves is not major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. — Plant Cell Environ. 34: 837–846, 2011.
Durner, J., Klessig, D.F.: Nitric oxide as a signal in plants. — Curr. Opin. Plant Biol. 2: 369–374, 1999.
Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Annu. Rev. Plant Physiol. 33: 317–345, 1982.
Fischer, R.A., Turner, N.C.: Plant productivity in the arid and semiarid zone. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 29: 277–317, 1978.
Foyer, C.H., Noctor, G.: Oxygen processing in photosynthesis: regulation and signaling. — New Phytol. 146: 359–388, 2000.
García-Mata, C., Lamattina, L.: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. — Plant Physiol. 126: 1196–1204, 2001.
Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.
Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases: I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.
González, E.M., Gordon, A.J., James, C.L. et al.: The role of sucrose synthase in the response of soybean nodules to drought. — J. Exp. Bot. 46: 1515–1523, 1995.
Guo, F.-Q., Crawford, N.M.: Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. — Plant Cell 17: 3436–3450, 2005.
Harley, P.C., Loreto, F., di Marco, G. et al.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. — Plant Physiol. 98: 1429–1436, 1992.
Igamberdiev, A.U., Bykova, N.V., Lea, P.J. et al.: The role of photorespiration in redox and energy balance of photosynthetic plant cells: A study with a barley mutant deficient in glycine decarboxylase. — Physiol. Plant. 111: 427–438, 2001.
Igarashi, D., Tsuchida, H., Miyao, M. et al.: Glutamate: glyoxylate aminotransferase modulates amino acid content during photorespiration. — Plant Physiol. 142: 901–910, 2006.
Johnson, X., Wostrikoff, K., Finazzi, G. et al.: MRL1, a conserved pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. — Plant Cell 22: 234–248, 2010.
Kozaki, A., Takeba, G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.
Krall, J.P., Edwards, G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. — Physiol. Plant. 86: 180–187, 1992.
Kumagai, E., Araki, T., Ueno, O.: Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their response to nitrogen-deficiency. — Plant Prod. Sci. 13: 11–20, 2010.
Li, J.H., Liu, Y.Q., Lu, P. et al.: A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. — Plant Physiol. 150: 114–124, 2009.
Li, P.M., Cai, R.G., Gao, H.Y. et al.: Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. — Physiol. Plant. 129: 822–829, 2007.
Lum, H.-K., Lee, C.-H., Butt, Y.-K. et al.: Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). — Nitric Oxide 12: 220–230, 2005.
Martin, A., Lee, J., Kichey, T.: Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. — Plant Cell 18: 3252–3274, 2006.
Miyake, C., Yokota, A.: Determination of the rate of photoreduction of O2 in the water-water cycle in watermelon leaves and enhancement of the rate by limitation of photosynthesis. — Plant Cell Physiol. 41: 335–343, 2000.
Miyake, C., Yokota, A.: Cyclic flow of electrons within PSII in thylakoid membranes. — Plant Cell Physiol. 42: 508–515, 2001.
Murchie, E.H., Niyogi, K.K.: Manipulation of photoprotection to improve plant photosynthesis. — Plant Physiol. 155: 86–92, 2011.
Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.
Neill, S.J., Desikan, R., Hancock, J.T.: Nitric oxide signalling in plants. — New Phytol. 159: 11–35, 2003.
Nygren, C.M.R., Eberhardt, U., Karlsson, M. et al.: Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. — New Phytol. 180: 875–889, 2008.
Quesada, A., Gómez-García, I., Fernández, E.: Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. — Trends Plant Sci. 5: 463–364, 2000.
Ruuska, S.A., Bagder, M.R., Andrews, T.J. et al.: Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: Little evidence for significant Mehler reaction. — J. Exp. Bot. 51: 357–368, 2000.
Scheible, W.R., Lauerer, M., Schulze, E.D. et al.: Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. — Plant J. 11: 671–691, 1997.
Takahashi, S., Bauwe, H., Badger, M.: Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. — Plant Physiol. 144: 487–494, 2007.
Tossi, V., Lamattina, L., Cassia, R.: An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. — New Phytol. 181: 871–879, 2009.
von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981.
Wendehenne, D., Pugin, A., Klessig, D.F. et al.: Nitric oxide comparativesynthesis and signaling in animal and plant cells. — Trends Plant Sci. 6: 177–183, 2001.
Wingler, A., Quick, W.P., Bungard, R.A. et al.: The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. — Plant Cell Environ. 22: 361–373, 1999.
Wong, S.C., Cowan, I.R., Farquhar, G.D.: Stomatal conductance correlates with photosynthetic capacity. — Nature 282: 424–426, 1979.
Xuan, Y., Zhou, S., Wang, L. et al.: Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. — Plant Physiol. 153: 1895–1906, 2010.
Zhao, M.-G., Tian, Q.-Y., Zhang, W.-H.: Nitric oxide synthasedependent nitric oxide production is associated with salt tolerance in Arabidopsis. — Plant Physiol. 144: 206–217, 2007.
Zhou, Y.H., Yu, J.Q., Huang, L.F. et al.: The relationship between CO2 assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. — Plan Cell Environ. 27: 1503–1514, 2004.