Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al–Cu Alloy Rings

Wenhua Guo1,2, Youping Yi3, Shiquan Huang4, Hailin He1,2, Jie Fang4
1Research Institute of Light Alloy, Central South University, Changsha, China
2State Key Laboratory of High Performance Complex Manufacturing, Changsha, China
3Research Institute of Light Alloy, Central South University, Changsha, 410083, China
4State Key Laboratory of High Performance Complex Manufacturing, Changsha, 410083, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)

H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)

M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491

P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)

G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)

P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)

R. Song, D. Ponge, D. Raabe, J.G. Speera, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A 44, 11–17 (2006)

L. Liu, Y.X. Wu, H. Gong, S. Li, A.S. Ahmad, A physically based constitutive model and continuous dynamic recrystallization behaviour analysis of 2219 aluminum alloy during hot deformation process. Materials 11(8), 1443 (2018)

L. Liu, Y.X. Wu, H. Gong, Effects of deformation parameters on microstructural evolution of 2219 aluminum alloy during intermediate thermo-mechanical treatment process. Materials 11(9), 1496 (2018)

R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Lesuer, T.G. Nieh, Superplasticity in a 2219 aluminum alloy. Scripta Mater. 44(10), 2411–2417 (2001)

H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)

N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 43, 419–425 (2013)

B.S. Peng, A.L. Ning, Z.Y. Liu, X.C. Xu, S.S. Shou, Dissolution behavior of second phases in Al–Cu binary alloy during severe plastic deformation. Chin. J. Nonferrous. Met. 19(5), 874–880 (2009)

H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings. Mater. Charact. 135, 18–24 (2017)

R. Sandström, R. Lagneborg, A model for static recrystallization after hot deformation. Acta Metall. 23(4), 481–488 (1975)

P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Abnormal subgrain growth in a dislocation-based model of recovery. Modell. Simul. Mater. Sci. Eng. 19(4), 1243–1250 (2015)

X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426–431 (2017)

K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)

H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160, 293–302 (2019)

S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression. Mater. Des. 10, 7277–7289 (2016)

G. Gottstein, Rekristallisation metallischer werkstoffe (DGM-Informations-gesellschaft, Oberursel, 1984), p. 60

J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J. Magn. Alloys 1, 31–38 (2013)

M.F. Vaz, A. Soares, M.A. Fortes, Computer simulation of grain growth in a non-equiaxed polycrystal. Scripta. Metal. Mater. 24(12), 2453–2458 (1990)

F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 102–112

D. Pal, B. Stucker, A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 64 (2013)

S.K. Chaudhury, D. Apelian, Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed. J. Mater. Sci. 41, 4684–4690 (2006)

D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, London, 2009), pp. 55–60

G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behavior in aluminum. J. Mater. Sci. 45, 2921–2929 (2010)

P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)

J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007)

K. Horikawa, S. Kuramoto, M. Kanno, Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta. Mater. 49, 3981–3989 (2001)

S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, H.R. Lashgari, The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater. Des. 31(9), 4450–4456 (2010)

V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy. Mater. Sci. Eng. A 502, 45–53 (2009)

C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloys. Compd. 693, 582–591 (2017)

C.V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, N.E. Prasad, Tensile deformation and fracture behaviour of an aerospace aluminium alloy AA2219 in different ageing conditions. Proc. Mater. Sci. 6, 322–330 (2014)

N. Lu, K. Du, L. Lu, H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwin. Nat. Commun. 16(6), 7648 (2015)

L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34(2), 241–248 (1998)

S.G. Roberts, S.J. Noronha, A.J. Wilkinson, P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritic steels. Acta Mater. 50(5), 1229–1244 (2002)