Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của việc dop Terbium lên các tính chất cấu trúc, quang học và quang xúc tác của nanopowder ZnO được chế tạo bằng phương pháp phản ứng rắn
Tóm tắt
Nanopowder oxit kẽm (ZnO) được dop bằng Terbium (Tb) với các nồng độ Tb khác nhau (3%, 5% và 7%) đã được tổng hợp thông qua phương pháp phản ứng rắn và được nghiên cứu bằng cách sử dụng phân tích nhiệt trọng lượng, nhiễu xạ tia X, kính hiển vi điện tử quét, kính hiển vi điện tử truyền và quang phổ hồng ngoại biến đổi Fourrier. Kết quả XRD cho thấy các nanopowder có cấu trúc giai đoạn wurtzite lục giác với kích thước hạt trong khoảng từ 20–56 nm với độ tinh khiết cao. Hiệu suất quang xúc tác thử nghiệm trên sự phân hủy thuốc nhuộm methylene blue bằng oxy già dưới ánh sáng UV–Vis tự nhiên ở pH ~ 6.4 trong 30 phút đạt được mức tăng từ khoảng 3.6 đến 48%. Các tính chất quang học cho thấy sự gia tăng khả năng hấp thụ quang trong phạm vi khả kiến từ khoảng 35 đến 72%, giảm năng lượng băng khoảng từ 3.215 đến 3.188 eV và phát xạ phát quan mạnh mẽ dưới kích thích cực tím trong vùng quang phổ xanh và xanh lam, có thể điều chỉnh độ dài sóng bằng cách thay đổi tỷ lệ dop Tb.
Từ khóa
#Terbium #ZnO #nanopowder #quang xúc tác #tính chất quang học #phản ứng rắn.Tài liệu tham khảo
E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles. J. Phys. Chem. B. 102, 5566–5572 (1998)
L. Zhang, G. Meng, F. Phillipp, Synthesis and characterization of nanowires and nanocables. Mater. Sci. Eng. A 286, 34–38 (2000)
J.-H. Liu, X. Ma, Y. Xu, H. Tang, S.-T. Yang, Y.-F. Yang, D.-D. Kang, H. Wang, Y. Liu, Low toxicity and accumulation of zinc oxide nanoparticles in mice after 270-day consecutive dietary supplementation. Toxicol. Res. 6, 134–143 (2017)
S. Chu, M. Morshed, L. Li, J. Huang, J. Liu, Smooth surface, low electron concentration, and high mobility ZnO films on c-plane sapphire. J. Cryst. Growth 325, 36–40 (2011)
T.-Y. Lai, T.-H. Fang, Y.-J. Hsiao, E.-Y. Kuo, Structure and characteristics of electrospun ZnO nanofibers for gas sensing. Curr. Nanosci. 16(2), 187–195 (2020)
S.-I. Senatova, A.-R. Mandal, F.-S. Senatov, N.-Y. Anisimova, S.-E. Kondakov, P.-K. Samanta, D.-V. Kuznetsov, Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens. Curr. Nanosci. 11, 3 (2015)
A. Janotti, C.-G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)
L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, Origin of visible photoluminescence of ZnO quantum dots: defect-dependent and size-dependent. J. Phys. Chem. C 114(21), 9651–9658 (2010)
S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L.E.L. Mir, Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Mater. Chem. Phys. 10, 5194 (2020)
X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006)
J. Huang, Y. Zhigang, Q. Zheng, Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 4, 3861–3877 (2011)
R. Kandulna, R.-B. Choudhary, P. Maji, Ag-doped ZnO reinforced polymeric Ag:ZnO/PMMA nanocomposites as electron transporting layer for OLED application. J. Inorg. Organomet. Polym. Mater. 27, 1760–1769 (2017)
P. Nakarungsee, S. Srirattanapibul, C. Issro, I.-M. Tang, S. Thongmee, High performance Cr doped ZnO by UV for NH3 gas sensor. Sens Actuators A 314, 112230 (2020)
R. Mohammadi, M. Feyzi, M. Joshaghani, Synthesis of ZnO-magnetic/ZSM-5 and its application for removal of disperse Blue 56 from contaminated water. Chem. Eng. Process. 153, 107969 (2020)
A. Mondal, P.-B. Chouke, V. Sonkusre, T. Lambat, A.-A. Abdala, S. Mondal, R.-G. Chaudhary, Ni-doped ZnO nanocrystalline material for electrocatalytic oxygen reduction reaction. Mater. Today Proc. 139, 244 (2020)
G. Lee, T. Kawazoe, M. Ohtsu, Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun. 124, 163–165 (2002)
Y. Caglar, K. Gorgun, S. Aksoy, Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis. Spectrochim. Acta 138, 617–622 (2015)
Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method. Appl. Phys. A 92, 275–278 (2008)
V. Prasad, C. D’Souza, D. Yadav, A. Shaikh, N. Vigneshwaran, Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectroc. Acta A 65, 173–178 (2006)
L. Spanhel, M.-A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826–2833 (1991)
W. Chen, C. Yao, J. Gan, K. Jia, Z. Hu, J. Lin, N. Xu, J. Sun, J. Wu, ZnO colloids and ZnO nanoparticles synthesized by pulsed laser ablation of zinc powders in water. Mater. Sci. Semicond. Process. 109, 104918 (2020)
J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018)
K. Singh, J. Singh, M. Rawat, Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl. Sci. 1, 624 (2019)
K. Raja, P. Ramesh, D. Geetha, Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrosc Acta A 131, 183–188 (2014)
N.-H. Hashim, S. Subramani, M. Devarajan, A.R. Ibrahim, Structural and surface characterization of undoped ZnO and Cu doped ZnO using sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 27, 3520–3530 (2016)
L. Chen, J. Zhang, X. Zhang, F. Liu, X. Wang, Optical properties of trivalent europium doped ZnO: Zn phosphor under indirect excitation of near-UV light. Opt. Express 16, 11795–11801 (2008)
P. Pradyumnan, N. Divya, P. Aparna, Structural and dielectric studies of Gd doped ZnO nanocrystals at room temperature. J. Chem. Eng. Mater. Sci. 4, 79–88 (2016)
W. Zou, C. Ge, G. Venkataiah, H. Su, H. Hsu, J. Huang, X. Liu, F. Zhang, Y. Du, Ferromagnetism in Tb doped ZnO nanocrystalline films. J. Appl. Phys. 111(11), 541–552 (2012)
L. Yang, Y. Li, Y. Xiao, C. Ye, L. Zhang, Synthesis of Tb3+-doped ZnO nanowire arrays through a facile sol–gel template approach. Chem. Lett. 34, 828–829 (2007)
W. Thoburn, S. Legvold, F. Spedding, Magnetic properties of terbium metal. Phys. Rev. 112(56), 828–829 (1958)
G.-S. Lotey, J. Singh, N. Verma, Room temperature ferromagnetism in Tb-doped ZnO dilute magnetic semiconducting nanoparticles. Mater. J. Sci. Mater. Electron. 24, 3611–3616 (2013)
G. Wakefield, H. Keron, P. Dobson, J. Hutchison, Structural and optical properties of terbium oxide nanoparticles. Phys. Chem. J. Solids 60, 503–508 (1999)
M. Rekaby, Photoluminescence and magnetic properties of undoped and (Mn, Co) co-doped ZnO nanoparticles. Curr. Nanosci. 15, 1–12 (2020)
B. Poornaprakash, U. Chalapathi, S.-H. Park, Structural and magnetic properties of ZnS:Tb3+ nanoparticles. J. Mater. Sci. Mater. Electron. 28, 3672–3677 (2017)
N. Aggarwal, A. Vasishth, K. Kaur, N.-K. Verma, Investigation of optical, electrical and magnetic properties of Tb-doped ZnO nanorods. J. Mater. Sci. Mater. Electron. 30, 4807–4812 (2019)
L.-F. Koao, B.-F. Dejene, H.-C. Swart, S.-V. Motloung, T.-E. Motaung, S.-P. Hlangothi, Effect of Tb3+ ions on the ZnO nanoparticles synthesized by chemical bath deposition method. Adv. Mater. Lett. 7(7), 529–535 (2016)
M. Shkir, K.-V. Chandekar, B.-M. Alshehri, A. Khan, S. Al-Faify, M.-S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2020)
A. Azamm, F. Ahmed, N. Arshi, M. Chaman, A. Naqvi, Formation and characterization of ZnO nanopowder synthesized by sol–gel method. J. Alloys Compd. 496, 503–508 (2010)
M. Khatamian, A. Khandar, B. Divband, M. Haghighi, S. Ebrahimiasl, Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles. J. Mol. Catal. A 365, 120–127 (2012)
X. Teng, H. Fan, S. Pan, C. Ye, G. Li, Influence of annealing on the structural and optical properties of ZnO: Tb thin films. J. Appl. Phys. 100, 053507 (2006)
S. Pati, P. Banerji, S. Majumder, Properties of indium doped nanocrystalline ZnO thin films and their enhanced gas sensing performance. RSC Adv. 5, 61230–61238 (2015)
P. Liu, Y. Liang, H. Li, J. Xiao, T. He, G. Yang, Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesized by laser ablation in liquids. AIP Adv. 3, 022127 (2013)
A.L. Al-Otaibi, T. Ghrib, M.A. Alharbi, R. Hamdi, I. Massoudi, Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts. Chem. Phys. 525, 110410 (2019)
P. Giri, S. Bhattacharyya, D.-K. Singh, R. Kesavamoorthy, B. Panigrahi, K. Nair, Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling. J. Appl. Phys. 102, 093515 (2007)
G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. Sin. Engl. Lett. 1, 22–31 (1953)
L. Arda, The effects of Tb doped ZnO nanorod: an EPR study. J. Magn. Magn. Mater. 475, 493–501 (2019)
P.-P. Pal, J. Manam, Photoluminescence and thermoluminescence studies of Tb3+ doped ZnO nanorods. Mater. Sci. Eng. B 178, 400–408 (2013)
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th edn. (Willey, New York, 2008), pp. 13–168
O. Bechambi, S. Sayadi, W. Najjar, Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 32, 201–210 (2015)
I. Massoudi, A. Rebey, Analysis of in situ thin films epitaxy by reflectance spectroscopy: effect of growth parameters. Superlattices Microstruct. (2019). https://doi.org/10.1016/j.spmi.2019.05.026
A. Manikandan, E. Manikandan, B. Meenatchi, S. Vadivel, S.-K. Jaganathan, R. Ladchumananandasivam, M. Henini, M. Maaza, J.-S. Aanand, Rare earth element (REE) lanthanum doped zinc oxide (La: ZnO) nanomaterials: Synthesis structural optical and antibacterial studies. J. Alloys Compd. 723, 1155–1161 (2017)
S. Anandan, S. Muthukumaran, Influence of Yttrium on optical; structural and photoluminescence properties of ZnO nanopowders by sol–gel method. Adv. Opt. Mater. 35, 2241–2249 (2013)
M. Salem, S. Akir, T. Ghrib, K. Daoudi, M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. J. Alloys Compd. 685, 107–113 (2016)
A.-B. Lavand, Y.-S. Malghe, Synthesis, characterization and visible light photocatalytic activity of carbon and iron modified ZnO. J. King Saud Univ. Sci. 30, 65–74 (2018)
A.-R. Rajabi, S. Jabbarzare, M.-R. Mohammad-Shafiee, M. Ghashang, Barium doped ZnO nano-particles: preparation and evaluation of their catalytic activity. Curr. Nanosci. 10, 2 (2014)
X. Liu, X. Wang, H. Li, J. Li, L. Pan, J. Zhang, G. Min, Z. Sun, C. Sun, Enhanced visible light photocatalytic activity of ZnO doped with down-conversion NaSrBO3: Tb3+ phosphors. Dalton Trans. 44, 97–103 (2015)
W. Raza, S.-M. Faisal, M. Owais, D. Bahnemann, M. Muneer, Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic; antibacterial and anticancer activity. RSC Adv. 6, 78335–78350 (2016)
O. Oprea, O. Vasile, G. Voicu, L. Craciun, E. Andronescu, Photoluminescence; magnetic properties and photocatalytic activity of Gd3+ doped ZnO nanoparticles. Dig. J. Nanomater. Biostruct. 7, 1757–1766 (2012)
G.-L. Kabongo, G.-H. Mhlongo, T. Malwela, B.-M. Mothudi, K.-T. Hillie, M.-S. Dhlamini, Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. J. Alloys Compd. 591, 156–163 (2014)