Tác động của Độ rỗng đến Tính chất Cơ học và Khả năng Chống ăn mòn của Hợp kim Ti-10Mo Rỗng được Chế tạo bằng Phương pháp Kim loại Học Bột
Tóm tắt
Các hợp kim Ti-10Mo rỗng nhị phân đã được chế tạo bằng cách sử dụng bột titan không hình cầu và molybden, thông qua kỹ thuật giữ không gian trong công nghệ kim loại học bột (PM). Dựa trên phân tích ba chiều về đặc điểm độ rỗng, một đánh giá chi tiết về ảnh hưởng của độ rỗng đến các tính chất cơ học và khả năng chống ăn mòn trong dung dịch đệm phosphate (PBS) đã được thực hiện. Để so sánh, hợp kim CP-Ti chế tạo từ PM với độ rỗng 50,5% đã được nung kết ở 1200 °C trong 2 giờ và hợp kim Ti-10Mo đặc được nung kết ở 1450 °C trong 2 giờ (mật độ tương đối là 97,2% và độ rỗng là 2,8%) đã được nghiên cứu đồng thời. Kết quả cho thấy rằng khi thể tích chất giữ không gian tăng từ 63 đến 79%, độ rỗng mở và kích thước lỗ trung bình (d50) tăng đáng kể, trong khi phân bố kích thước lỗ (d10–d90) có xu hướng ổn định ở khoảng 100 μm. Kích thước lỗ trung bình (d50) của hợp kim Ti-10Mo rỗng có thể được kiểm soát trong khoảng 70–380 μm. Hợp kim Ti-10Mo rỗng chế tạo bằng PM có thể đạt được một loạt các tính chất cơ học, với sức nén chịu kéo là 248,2–76,9 MPa, và mô đun đàn hồi từ 6,4–1,7 GPa. Ngoài ra, sức nén chịu kéo và mô đun đàn hồi đáp ứng công thức hồi quy tuyến tính và mũ, tương ứng. Khi độ rỗng của hợp kim Ti-10Mo tăng từ 2,8 đến 66,9%, tốc độ ăn mòn tăng theo hàm số mũ từ 1,6 g/m2·ngày lên 17,1 g/m2·ngày. So với CP Ti có độ rỗng gần như tương tự, hợp kim Ti-10Mo cho thấy khả năng chống ăn mòn cao hơn đáng kể. Do đó, các mối quan hệ giữa độ rỗng và các tính chất cơ học, khả năng chống ăn mòn của hợp kim Ti-10Mo đã được thiết lập, có thể được sử dụng làm tài liệu tham khảo thiết kế trong việc lựa chọn vật liệu cho các ứng dụng chỉnh hình.
Từ khóa
Tài liệu tham khảo
Zhao, 2012, Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications, Acta Biomater., 8, 1990, 10.1016/j.actbio.2012.02.004
Wang, 2016, Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review, Biomaterials, 83, 127, 10.1016/j.biomaterials.2016.01.012
Ho, 1999, Structure and properties of cast binary Ti-Mo alloys, Biomaterials, 20, 2115, 10.1016/S0142-9612(99)00114-3
Gonzalez, 1999, Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications, J. Electroanal. Chem., 471, 109, 10.1016/S0022-0728(99)00260-0
Kumar, 2008, Corrosion behaviour of Ti-15Mo alloy for dental implant applications, J. Dent., 36, 500, 10.1016/j.jdent.2008.03.007
Oliveira, 2009, Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications, Acta Biomater., 5, 399, 10.1016/j.actbio.2008.07.010
Jablokov, 2005, The application of Ti-15Mo beta titanium alloy in high strength structural orthopaedic applications, J. ASTM Int., 2, 1
Li, 2010, Cytotoxicity of titanium and titanium alloying elements, J. Dent. Res., 89, 493, 10.1177/0022034510363675
Niinomi, 2003, Aging characteristics and mechanical property of Ti-29Nb-13Ta-4.6Zr coated with calcium phosphate invert glass-ceramic for biomedical application, J. Jpn. Inst. Met., 67, 604, 10.2320/jinstmet1952.67.10_604
Cremasco, 2011, Effects of alloying elements on the cytotoxic response of titanium alloys, Mater. Sci. Eng. C, 31, 833, 10.1016/j.msec.2010.12.013
Lee, 2014, Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys, Int. J. Mater. Res., 105, 847, 10.3139/146.111092
Yan, 2014, Impacts of trace carbon on the microstructure of as-sintered biomedical Ti-15Mo alloy and reassessment of the maximum carbon limit, Acta Biomater., 10, 1014, 10.1016/j.actbio.2013.10.034
Farber, 2003, Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells, Biomaterials, 24, 1745, 10.1016/S0142-9612(02)00537-9
Marin, 2010, Characterization of cellular solids in Ti6Al4V for or thopaedic implant applications: Trabecular titanium, J. Mech. Behav. Biomed., 3, 373, 10.1016/j.jmbbm.2010.02.001
Zardiackas, 2011, Structure, metallurgy, and mechanical properties of a porous tantalum foam, J. Biomed. Mater. Res. A, 58, 180, 10.1002/1097-4636(2001)58:2<180::AID-JBM1005>3.0.CO;2-5
Lutton, 2016, Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development, Mater. Sci. Eng. R, 104, 1, 10.1016/j.mser.2016.03.001
Gao, 2012, Mechanical modulation and bioactive surface modification of porous Ti-10Mo alloy for bone implants, Mater Des., 42, 13, 10.1016/j.matdes.2012.05.041
Xie, 2013, Preparation and properties of porous Ti-10Mo alloy by selective laser sintering, Mater. Sci. Eng. C, 33, 1085, 10.1016/j.msec.2012.11.037
Xie, 2015, Selective laser sintered porous Ti-(4–10)Mo alloys for biomedical applications: Structural characteristics, mechanical properties and corrosion behaviour, Corros. Sci., 95, 117, 10.1016/j.corsci.2015.03.005
Xie, 2013, Structural characterization and electrochemical behavior of a laser-sintered porous Ti-10Mo alloy, Corros. Sci., 67, 217, 10.1016/j.corsci.2012.10.036
Chou, X.M. (2007). Research on Titanium Alloy and Porous Titanium in Powder Metallurgy, Central South University.
Sidambe, 2012, Metal injection moulding of CP-Ti components for biomedical applications, J. Mater. Process. Technol., 212, 1591, 10.1016/j.jmatprotec.2012.03.001
Xu, 2016, Existing forms and effects of trace impurities on mechanical properties of CP Ti, Mater. Sci. Eng. Powder Metall., 21, 672
Nyberg, 2005, Microstructure and mechanical properties of titanium components fabricated by a new powder injection molding technique, Mater. Sci. Eng. C, 25, 336, 10.1016/j.msec.2005.04.006
Wen, 2002, Novel titanium foam for bone tissue engineering, J. Mater. Res., 17, 2633, 10.1557/JMR.2002.0382
Kawai, 1997, Bone formation by cells from femurs cultured among three-dimensionally arranged hydroxyapatite granules, J. Biomed. Mater. Res. A, 37, 1, 10.1002/(SICI)1097-4636(199710)37:1<1::AID-JBM1>3.0.CO;2-W
Krishna, 2007, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater., 3, 997, 10.1016/j.actbio.2007.03.008
Heakal, 2011, Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions, Corros. Sci., 53, 2728, 10.1016/j.corsci.2011.05.003
Levy, 1969, Anodic Polarization of titanium and titanium alloys in hydrochloric acid, J. Electrochem. Soc., 116, 323, 10.1149/1.2411838
Assis, 2006, Corrosion characterization of titanium alloys by electrochemical techniques, Electrochim. Acta, 51, 1815, 10.1016/j.electacta.2005.02.121
McCafferty, 2005, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 47, 3202, 10.1016/j.corsci.2005.05.046
Thieme, 1999, Titanium Powder Sintering for Preparation of a Porous FGM Destined as a Skeletal Replacement Implant, Mater. Sci. Forum, 308, 374, 10.4028/www.scientific.net/MSF.308-311.374
Wen, 2001, Processing of biocompatible porous Ti and Mg, Scr. Mater., 45, 1147, 10.1016/S1359-6462(01)01132-0