Effects of Panax ginseng-containing herbal plasters on compressed intervertebral discs in an in vivo rat tail model

Chinese Medicine - Tập 8 - Trang 1-8 - 2013
Daniel H K Chow1, Alon Lai1, Fuk-Hay Tang1, Mason C P Leung2
1Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, PR China
2Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, PR China

Tóm tắt

Tienchi (Panax notoginseng) has been used in conservative treatments for back pain as a major ingredient of many herbal medicines. This study aims to investigate the effects of a herbal medicine containing tienchi on compressed intervertebral discs in rats. Using an in vivo rat tail model, intervertebral disc compression was simulated in the caudal 8–9 discs of 25 rats by continuous static compression (11 N) for 2 weeks. An herbal medicine plaster (in which the major ingredient was tienchi) was externally applied to the compressed disc (n=9) for three weeks, and held in place by an adhesive bandage, in animals in the Chinese Medicine (CM) group. The effect of the bandage was evaluated in a separate placebo group (n=9), while no intervention with unrestricted motion was provided to rats in an additional control group (n=7). Disc structural properties were quantified by in vivo disc height measurement and in vitro morphological analysis. Disc height decreased after the application of compression (P < 0.001). The disc height decreased continuously in the control (P = 0.006) and placebo (P = 0.003) groups, but was maintained in the CM group (P = 0.494). No obvious differences in disc morphology were observed among the three groups (P = 0.896). The tienchi-containing herbal plaster had no significant effect on the morphology of compressed discs, but maintained disc height in rats.

Tài liệu tham khảo

Biering-Sorensen F: Low back trouble in a general population of 30-, 40-, 50-, and 60-year-old men and women. Study design, representativeness and basic results. Dan Med Bull. 1982, 29: 289-299. Walsh K, Cruddas M, Coggon D: Low back pain in eight areas of Britain. J Epidemiol Community Health. 1992, 46: 227-230. 10.1136/jech.46.3.227. Adams MA, Bogduk N, Burton K: Dolan P:The biomechanics of back pain. 2006, Edinburgh: Churchill Livingstone Elsevier Luoma K, Riihimäki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A: Low back pain in relation to lumbar disc degeneration. Spine. 2000, 25: 487-492. 10.1097/00007632-200002150-00016. McNamara S: Song XK:Traditional Chinese medicine. 1995, London: Hamish Hamilton Yin J, Guo L: Zhong yao xian dai yan jiu yu lin chuang ying yong (中藥現代硏究與臨床應用). 1993, Beijing: Xue Yuan Chu Ban She, 學苑出版社- Chang SH, Choi Y, Park JA, Jung DS, Shin J, Yang JH, Ko SY, Kim SW, Kim JK: Anti-inflammatory effects of BT-201, an n-butanol extract of Panax notoginseng, observed in vitro and in a collagen-induced arthritis model. Clin Nutr. 2007, 26: 785-791. 10.1016/j.clnu.2007.07.008. Ling S, Nheu L, Dai A, Guo Z, Komesaroff P: Effects of four medicinal herbs on human vascular endothelial cells in culture. Int J Cardiol. 2008, 128: 350-358. 10.1016/j.ijcard.2007.05.111. Rhule A, Navarro S, Smith JR, Shepherd DM: Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J Ethnopharmacol. 2006, 106: 121-128. 10.1016/j.jep.2005.12.012. Jin UH, Park SG, Suh SJ, Kim JK, Kim DS, Moon SK, Lee YC, Park WH, Kim CH: Inhibitory effect of Panax notoginseng on nitric oxide synthase, cyclo-oxygenase-2 and neutrophil functions. Phytother Res. 2007, 21: 142-148. 10.1002/ptr.2018. Peng XD, Dai LL, Huang CQ, He CM, Yang B, Chen LJ: Relationship between anti-fibrotic effect of Panax notoginseng saponins and serum cytokines in rat hepatic fibrosis. Biochem Biophys Res Commun. 2009, 388: 31-34. 10.1016/j.bbrc.2009.07.099. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA: Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans. 2007, 35: 652-655. 10.1042/BST0350652. Le Maitre CL, Freemont AJ, Hoyland JA: The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther. 2005, 7: R732-R745. 10.1186/ar1732. Le Maitre CL, Hoyland JA, Freemont AJ: Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther. 2007, 9: R77-10.1186/ar2275. Kohyama K, Saura R, Doita M, Mizuno K: Intervertebral disc cell apoptosis by nitric oxide: biological understanding of intervertebral disc degeneration. Kobe J Med Sci. 2000, 46: 283-295. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1996, 21: 271-277. 10.1097/00007632-199602010-00003. Tong LP: HPLC analysis of Tienchi Huo Luo Bruise Analgesic Plater. 2000, Chongqing: Congqing Peidu Pharmaceutical Holdings Company Limited, 400060- Hughes PC, Tanner JM: The assessment of skeletal maturity in the growing rat. J Anat. 1970, 106: 371-402. Ching CT, Chow DH, Yao FY, Holmes AD: The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Clin Biomech (Bristol, Avon). 2003, 18: 182-189. 10.1016/S0268-0033(02)00188-2. Ching CT, Chow DH, Yao FY, Holmes AD: Changes in nuclear composition following cyclic compression of the intervertebral disc in an in vivo rat-tail model. Med Eng Phys. 2004, 26: 587-594. 10.1016/j.medengphy.2004.03.006. Lai A, Chow DH, Siu SW, Leung SS, Lau EF, Tang FH, Pope MH: Effects of static compression with different loading magnitudes and durations on the intervertebral disc: an in vivo rat-tail study. Spine. 2008, 33: 2721-2727. 10.1097/BRS.0b013e318180e688. Lai A, Chow DH, Siu WS, Holmes AD, Tang FH, Leung MC: Effects of electroacupuncture on a degenerated intervertebral disc using an in-vivo rat-tail model. Proc Inst Mech Eng H. 2008, 222: 241-248. Lai A, Chow DH: Effects of traction on structural properties of degenerated disc using an in vivo rat-tail model. Spine. 2010, 35: 1339-1345. Lai A, Chow DH, Siu WS, Holmes AD, Tang FH: Reliability of radiographic intervertebral disc height measurement for in vivo rat-tail model. Med Eng Phys. 2007, 29: 814-819. 10.1016/j.medengphy.2006.08.013. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS: A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine. 2005, 30: 5-14. Kroeber M, Unglaub F, Guehring T, Nerlich A, Hadi T, Lotz J, Carstens C: Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine. 2005, 30: 181-187. 10.1097/01.brs.0000150487.17562.b1. Lei XL, Chiou GC: Cardiovascular pharmacology of Panax notoginseng (Burk) F.H. Chen and Salvia miltiorrhiza. Am J Chin Med. 1986, 14: 145-152. 10.1142/S0192415X86000235. Widmaier EP, Raff H: Strang KT:Vander's human physiology: the mechanisms of body function. 2006, New York: McGraw-Hill Ghosh P: The Biology of the intervertebral disc. 1988, Boca Raton: CRC Press Moskowitz RW, Ziv I, Denko CW, Boja B, Jones PK, Adler JH: Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis. J Orthop Res. 1990, 8: 401-411. 10.1002/jor.1100080312. Elliott DM, Sarver JJ: Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine. 2004, 29: 713-722. 10.1097/01.BRS.0000116982.19331.EA. Roughley PJ: Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine. 2004, 29: 2691-2699. 10.1097/01.brs.0000146101.53784.b1. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ: Are animial models useful for studying human disorders/degeneration?. Eur Spine J. 2008, 17: 2-19. 10.1007/s00586-007-0414-y.