Effects of Mg composition on open circuit voltage of Cu2O–MgxZn1−xO heterojunction solar cells
Tài liệu tham khảo
Law, 2005, Nanowire dye-sensitized solar cells, Nature Materials, 4, 455, 10.1038/nmat1387
Mittiga, 2006, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Applied Physics Letters, 88, 163502-1, 10.1063/1.2194315
Izaki, 2007, Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device, Journal of Physics D: Applied Physics, 40, 3326, 10.1088/0022-3727/40/11/010
Rai, 1988, Cu2O solar cells: a review, Solar Cells, 25, 265, 10.1016/0379-6787(88)90065-8
Paul, 2008, Deep level transient spectroscopy of cyanide treated polycrystalline p-Cu2O/n-ZnO solar cell, Chemical Physics Letters, 463, 117, 10.1016/j.cplett.2008.08.065
Jeong, 2008, Electrodeposited ZnO/Cu2O heterojunction solar cells, Electrochimica Acta, 53, 2226, 10.1016/j.electacta.2007.09.030
Minami, 2006, Effect of ZnO film deposition methods on the photovoltaic properties of ZnO–Cu2O heterojunction devices, Thin Solid Films, 494, 47, 10.1016/j.tsf.2005.07.167
Tanaka, 2004, Electrical and optical properties of TCO–Cu2O heterojunction devices, Thin Solid Films, 244, 80, 10.1016/j.tsf.2004.06.180
Musselman, 2010, Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells, Advanced Materials, 22, E254, 10.1002/adma.201001455
Ohtomo, 1998, MgxZn1−xO as a II–VI widegap semiconductor alloy, Applied Physics Letters, 72, 2466, 10.1063/1.121384
Ohtomo, 1999, Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices, Applied Physics Letters, 75, 980, 10.1063/1.124573
Rao, 2005, Influence of Mg content on the band alignment at CdS/(Zn,Mg)O interfaces, Applied Physics Letters, 87, 032101-1, 10.1063/1.1995951
Olson, 2007, Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells, Advanced Functional Materials, 17, 264, 10.1002/adfm.200600215
Minemoto, 2003, Control of conduction band offset in wide-gap Cu(In,Ga)Se2 solar cells, Solar Energy Materials and Solar Cells, 75, 121, 10.1016/S0927-0248(02)00120-4
Meng, 2007, Growth of Zn1−xMgxO films with single wurtzite structure by MOCVD process and their application to Cu(InGa)(SSe)2 solar cells, Solar Energy Materials and Solar Cells, 91, 1887, 10.1016/j.solmat.2007.07.003
Mohemmed Shanid, 2008, Evolution of nanostructure, phase transition and band gap tailoring in oxidized Cu thin films, Thin Solid Films, 516, 6245, 10.1016/j.tsf.2007.11.119
Condorelli, 1994, Metal-organic chemical vapor deposition of copper-containing phases: kinetics and reaction mechanisms, Chemistry of Materials, 6, 1861, 10.1021/cm00046a048
Akimoto, 2006, Thin film deposition of Cu2O and application for solar cells, Solar Energy, 80, 715, 10.1016/j.solener.2005.10.012
De Jongh, 1999, Cu2O: electrodeposition and characterization, Chemistry of Materials, 11, 3512, 10.1021/cm991054e
Muthukumar, 2003, Selective MOCVD growth of ZnO nanotips, IEEE Transactions on Nanotechnology, 2, 50, 10.1109/TNANO.2003.809120
Tasker, 1979, The stability of ionic crystal surfaces, Journal of Physics C: Solid State Physics, 12, 4977, 10.1088/0022-3719/12/22/036
Li, 1999, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth, 203, 186, 10.1016/S0022-0248(99)00076-7
Kim, 2008, Surface morphology and growth mechanism of catalyst-free ZnO and MgxZn1−xO nanorods, Physica Status Solidi RPL, 197, 10.1002/pssr.200802084
Tobin, 1983, XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing, Applied Surface Science, 16, 441, 10.1016/0378-5963(83)90085-5
Larson, 1974, X-ray induced photoelectron and auger spectra of Cu, CuO, Cu2O, and Cu2S thin films, Journal of Electron Spectroscopy and Related Phenomena, 4, 213, 10.1016/0368-2048(74)80052-6
Ghodselahi, 2008, XPS study of the Cu@Cu2O core-shell nanoparticles, Applied Surface Science, 255, 2730, 10.1016/j.apsusc.2008.08.110
Kraut, 1980, Precise determination of the valence-band edge in X-ray photoemission spectra: application to measurement of semiconductor interface potentials, Physical Review Letters, 44, 1620, 10.1103/PhysRevLett.44.1620