Effects of Melt-Constrained Flow-Induced Nucleation Channel Length on Temperature Field and Microstructure of CuSn10P1 Alloy Semi-Solid Slurry

Wentao Xiong1, Rongfeng Zhou2,1, Zhangxing Liu1, Xinhua Yin1, Ke Wen1, Zhenze Zhu1, Yongkun Li2,1
1Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, People’s Republic of China
2City College, Kunming University of Science and Technology, Kunming, People’s Republic of China

Tóm tắt

With the increasing use of metal semi-solid forming technology in the production of high-quality copper alloy parts, foundational research on the robust preparation of copper alloy semi-solid slurry as key components and foundation of copper alloy semi-solid parts is critical. Therefore, based on the explosive nucleation theory and the 3D-CAFE method, the effects of the length of the melt-constrained flow-induced nucleation channel (185, 250, 315, and 365 mm), which is the core component of self-designed and developed fully enclosed melt-constrained flow-induced nucleation metal semi-solid slurry preparation device, on the temperature field distribution and microstructure of CuSn10P1 alloy during the of semi-solid slurry preparation was studied. The research results show that the numerical simulation results agreed with the experimental results. As the melt-constrained flow-induced nucleation channel length was increased from 185 to 365 mm, the chilling effect of the channel on the CuSn10P1 melt initially increased and then decreased. When the length of the melt-constrained flow-induced channel reached 315 mm, the most uniform temperature distribution, most homogeneous microstructure, and finest microstructure were obtained. Moreover, the grains had an average equivalent diameter of only 30.43 μm and with the distribution of 633/mm2.

Từ khóa


Tài liệu tham khảo

C. Chiavari, A. Colledan, A. Frignani et al., Corrosion evaluation of traditional and new bronzes for artistic castings. Mater. Chem. Phys. 95, 252–259 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.034 S. Scudino, C. Unterdorfer, K.G. Prashanth et al., Additive manufacturing of Cu-10Sn bronze. Mater. Lett. 156, 202–204 (2015). https://doi.org/10.1016/j.matlet.2015.05.076 S. Öztürk, B. Öztürk, G. Usta, Characteristics of rapidly solidified Cu–10% Sn alloy powders produced by water jet cooled rotating disc atomisation. Powder Metall. 54(5), 577–584 (2011). https://doi.org/10.1179/1743290110Y.0000000002 S.M. So, K.Y. Kim, S.J. Lee et al., Effects of Sn content and hot deformation on microstructure and mechanical properties of binary high Sn content Cu-Sn alloys. Mater. Sci. Eng. A 796, 140054 (2020). https://doi.org/10.1016/j.msea.2020.140054 B.B. Straumal, A.R. Kilmametov, B. Baretzky et al., High pressure torsion of Cu-Ag and Cu-Sn alloys: limits for solubility and dissolution. Acta Mater. 195, 184–198 (2020). https://doi.org/10.1016/j.actamat.2020.05.055 X. Liu, D. Tham, D. Yates, C.J. McMahon, Evidence for the intergranular segregation of tin to grain boundaries of a Cu–Sn alloy and its consequences for dynamic embrittlement. Mater. Sci. Eng. A 458, 123–125 (2007). https://doi.org/10.1016/j.msea.2006.12.103 X.F. Liu, J.H. Luo, X.C. Wang, Surface quality, microstructure, and mechanical properties of Cu–Sn alloy plate prepared by two-phase zone continuous casting. Trans. Nonfer. Metal. Soc. 25, 1901–1910 (2015). https://doi.org/10.1016/S1003-6326(15)63797-9 A. Halvaee, A. Talebi, Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy. J. Mater. Process. Tech. 118, 122–126 (2001). https://doi.org/10.1016/S0924-0136(01)00904-9 W.T. Xiong, R.F. Zhou, Z.X. Liu et al., Research on neural network genetic algorithm optimization in the preparation of CuSn10P1 semi-solid slurry with the fully enclosed melt-constrained cooling inclined plate. J. Adv. Mech. Des. Syst. Manuf. 15(3), 21–00017 (2021). https://doi.org/10.1299/jamdsm.2021jamdsm0026 S.B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz et al., Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Mater. Des. 46, 579–587 (2013). https://doi.org/10.1016/j.matdes.2012.10.041 J.A. Yurko, R.A. Martinez, M.C. Flemings, Commercial development of the semi-solid rheocasting (SSRTM) process. Metall. Sci. Technol. 21(1), 10–15 (2013) D.C. Hofmann, H. Kozachkov, H.E. Khalifa et al., Semi-solid induction forging of metallic glass matrix composites. JOM 61(17), 11 (2009). https://doi.org/10.1007/s11837-009-0172-x F. Taghavi, A. Ghassemi, Study on the effects of the length and angle of inclined plate on the thixotropic microstructure of A356 aluminum alloy. Mater. Des. 30, 1762–1767 (2009). https://doi.org/10.1016/j.matdes.2008.07.022 M. Shiomi, D. Takano, K. Osakada et al., Forming of aluminium alloy at temperatures just below melting point. Int. J. Mach. Tools Manuf. 43(3), 229–235 (2003). https://doi.org/10.1016/S0890-6955(02)00242-0 Z. Fan, Semisolid metal processing. Int. Mater. Rev. 47(2), 49–85 (2002). https://doi.org/10.1016/10.1179/095066001225001076 F. Taghavi, H. Saghafian, Y.H.K. Kharrazi, Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy. Mater. Des. 30(1), 115–121 (2009). https://doi.org/10.1016/j.matdes.2008.04.034 K. Wang, Z.Q. Zhang, H. Wen et al., Microstructural evolution of a fine-grained 7075Al alloy processed by friction stir process during partial remelting. Mater. Charact. 121, 1–8 (2016). https://doi.org/10.1016/j.matdes.2008.04.034 P. Annalisa, T. Marialaura, K. Plato, Microstructure and properties of semi-solid aluminum alloys: a literature review. Metals 8, 181 (2018). https://doi.org/10.3390/met8030181 Y. Zhang, G. Wu, W. Liu et al., Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng. A 595, 109–117 (2014). https://doi.org/10.1016/j.msea.2013.12.014 T. Motegi, F. Tanabe, E. Sugiura, Continuous casting of semisolid aluminium alloys. Mater. Sci. Forum 396–402(1), 203–208 (2002). https://doi.org/10.4028/www.scientific.net/MSF.396-402.203 Y. Birol, Cooling slope casting and thixoforming of hypereutectic A390 alloy. J. Mater. Process. Technol. 207(1 3), 200–203 (2007). https://doi.org/10.1016/j.jmatprotec.2006.12.021 Q.D. Qin, Y.G. Zhao, P.J. Cong et al., Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and its evolution during partial remelting process. Mater. Sci. Eng. A 444(1 2), 99–103 (2007). https://doi.org/10.1016/j.msea.2006.08.074 S. Salarfar, F. Akhlaghi, M. Nili-ahmadabadi, Influence of pouring conditions in the inclined plate process and reheating on the microstructure of the semisolid A356 aluminum alloy. In: 8th International conference on semisolid processing of alloys and composites, Cyprus, (2004) S.A. Sadough, M.R. Rahmani, V. Pouyafar, Rheological behavior, microstructure and hardness of A356 aluminum alloy in semisolid state using the backward extrusion process. Trans. Nonfer. Metal. Soc. 20, S906–S910 (2010). https://doi.org/10.1016/S1003-6326(10)60604-8 A.A. Abdelsalam, T.S. Mahmoud, A.A. El-Betar et al., A study of microstructures characteristics of A356-Al2O3 composites produced by cooling slope and conventional stir cast. Int. J. Curr. Eng. Technol. 15, 3560–3571 (2015) Y.Y. Ma, B.C. Yang, Y.B. Wang et al., Rheo-die casting of AZ91D magnesium alloy by twin-screw stirring. Chin. J. Rare Metals 37(1), 27–32 (2013) Y.K. Li, L. Li, B.Y. Geng et al., Microstructure characteristics and strengthening mechanism of semisolid CuSn10P1 alloys. Mater. Charact. 172, 110898 (2021). https://doi.org/10.1016/j.matchar.2021.110898 J. Jiang, G. Xiao, Y. Wang et al., Microstructure evolution of wrought nickel-based superalloy GH4037 in the semi-solid state. Mater. Charact. 141, 229–237 (2018). https://doi.org/10.1016/j.matchar.2018.04.057 T. Motegi, Semi-solid casting using inclined cooling plate. Chūzō kōgaku 77, 526–530 (2005). https://doi.org/10.11279/jfes.77.526 Q. Cheng, H.M. Guo, X.J. Yang, Effect of semi-solid isothermal heat treatment on microstructure of Cu-Ca alloy, Special Casting and Nonferrous Alloys. 32(3), 50–53 (2012). S.B. Zuo, Application on the preparation of aluminum and copper base semisolid slurry by using cooling slope (Dalian University of Technology, Dalian, 2012) M. Cao, Z. Wang, Q. Zhang, Microstructure dependent mechanical properties of semi-solid copper alloys. J. Alloy. Compd. 715, 413–420 (2017). https://doi.org/10.1016/j.jallcom.2017.03.360 X. Zhan, Y. Wei, Z. Dong, Cellular automaton simulation of grain growth with different orientation angles during solidification process. J. Mater. Process. Tech. 208, 1–8 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.130 J. Wang, P.P. Jin, P.L. Bisop et al., Upgrade of three municipal wastewater treatment lagoons using a high surface area media. Front. Env. Sci. Eng. 6, 288–293 (2012). https://doi.org/10.1007/s11783-011-0280-z L. Saucedo-Mora, T.J. Marrow, FEMME: a multi-scale finite element microstructure MEshfree fracture model for quasi-brittle materials with complex microstructures. Eng. Fract. Mech. 147, 355–372 (2015). https://doi.org/10.1016/j.engfracmech.2015.05.059 A. Shterenlikht, L. Margetts, Three-dimensional cellular automata modelling of cleavage propagation across crystal boundaries in polycrystalline microstructures. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2177), 1–19 (2015). https://doi.org/10.1098/rspa.2015.0039 M.A. Zaeem, H. Yin, S.D. Felicelli, Comparison of cellular automaton and phase field models to simulate dendrite growth in hexagonal crystals. J. Mater. Sci. Technol. 28, 137–146 (2012). https://doi.org/10.1016/S1005-0302(12)60034-6 M. Asle Zaeem, H. Yin, S.D. Felicelli, Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods. Appl. Math. Model. 37, 3495–3503 (2013). https://doi.org/10.1016/j.apm.2012.08.005 C.A. Gandin, M. Rappaz, R. Tintillier, Three-dimensional probabilistic simulation of solidification grain structures: application to superalloy precision castings. Metall. Trans. A 24, 467–479 (1993). https://doi.org/10.1007/BF02657334 C.A. Gandin, M. Rappaz, A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta Metall. Mater. 42, 2233–2246 (1994). https://doi.org/10.1016/0956-7151(94)90302-6 J. Fang, M. Xie, J. Hu et al., Simulation of temperature field, flow field and solidification structure for Ag–28Cu–2Ge–0.4Co alloy. Mater. Sci. Tech. 36, 33–45 (2020). https://doi.org/10.1080/02670836.2019.1675968 S. McFadden, D.J. Browne, A front-tracking model to predict solidification macrostructures and columnar to equiaxed transitions in alloy castings. Appl. Math. Model. 33, 1397–1416 (2009). https://doi.org/10.1016/j.apm.2008.01.027 N. Saunders, A.P. Miodownik, Calculation of phase diagrams: a comprehensive guide (Oxford University Press, London, 1998), p.33 U.R. Kattner, The thermodynamic modeling of multicomponent phase equilibria. JOM 49, 14–19 (1997). https://doi.org/10.1007/s11837-997-0024-5 J.D. Hwang, H.J. Lin, W.S. Hwang et al., Numerical simulation of metal flow and heat transfer during twin roll strip casting. ISIJ Int. 35, 170 (1995). https://doi.org/10.2355/isijinternational.35.170 R.P. Pang, F.M. Wang, G.Q. Zhang et al., Study on solidification heat parameters of 430 ferritic stainless steel based on 3D-CAFE Method. Acta Metall. Sin. 49, 1234–1235 (2013). https://doi.org/10.3724/SP.J.1037.2013.00288 J. Wang, F. Wang, C. Li, J. Zhang, Simulation of 3D-microstructure in free-cutting steel 9SMn28 under water cooling condition with convection and porosity. ISIJ Int. 50(2), 222–230 (2010). https://doi.org/10.2355/isijinternational.50.222 F. Taghavi, A. Ghassemi, Study on the effects of the length and angle of inclined plate on the thixotropic microstructure of A356 aluminum alloy. Mater. Des. 30, 1763 (2009). https://doi.org/10.1016/j.matdes.2008.07.022 Q.L. Liu, X.M. Li, Y.H. Jiang, Numerical simulation of EBCHM for the large-scale TC4 alloy slab ingot during the solidification process. Vacuum 141, 7 (2017). https://doi.org/10.1016/j.vacuum.2017.03.009 E. Koleva, K. Vutova, G. Mladenov, The role of ingot–crucible thermal contact in mathematical modelling of the heat transfer during electron beam melting. Vacuum 62, 189–196 (2001). https://doi.org/10.1016/S0042-207X(00)00437-1 T. Carozzani, H. Digonnet, C. Gandin, 3D CAFE modeling of grain structures: application to primary dendritic and secondary eutectic solidification. Model. Simul. Mater. Sc. 20, 015010 (2012). https://doi.org/10.1088/0965-0393/20/1/015010 M.F. Zhu, J.M. Kim, C.P. Hong, Modeling of globular and dendritic structure evolution in solidification of an Al-7mass%Si alloy. ISIJ Int. 41, 992–998 (2001). https://doi.org/10.2355/isijinternational.41.992 Q.P. Wang, R.F. Zhou, R.J. Guan et al., The deformation compatibility and recrystallisation behaviour of the alloy CuSn10P1. Mater. Charact. 174, 110940 (2021). https://doi.org/10.1016/j.matchar.2021.110940