Effects of He Irradiation on Yttria‐Stabilized Zirconia Ceramics

Journal of the American Ceramic Society - Tập 98 Số 4 - Trang 1314-1322 - 2015
Tengfei Yang1, Caitlin A. Taylor2, Chenxu Wang1, Yanwen Zhang2,3, William J. Weber2,3, Jingren Xiao1, Jianming Xue1, Sha Yan1, Yugang Wang1
1State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
2Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996
3Materials Science & Technology Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831‐6138

Tóm tắt

Effects of He irradiation on polycrystalline yttria‐stabilized zirconia (YSZ) are studied with the focus on irradiation‐induced damage buildup, He behavior, and volume swelling. The evolution of irradiation‐induced structural damage in polycrystalline YSZ, which is independent of grain orientation, is described by a multistep damage accumulation model. A three‐step damage evolution process was found, and different types of defects were observed in the different damage steps. Compared with single‐crystal YSZ, the second damage step occurs at a lower dose in polycrystalline YSZ due to the initial defects and strain. The implanted He ions are readily trapped along the grain boundaries and the mobility of He ions is greatly increased. The enhanced He mobility along the grain boundary leads to a lower threshold irradiation dose and a larger penetration depth for bubble formation. Similar morphologies are observed for the He bubbles in the polycrystalline YSZ and in single‐crystal YSZ, and the formation of He bubbles in polycrystalline YSZ is not influenced by grain orientation. As both the extended defects and He bubbles can induce volume swelling, the variation in volume swelling as a function of dose can be divided into a two stage process.

Từ khóa


Tài liệu tham khảo

10.1111/j.1551-2916.2004.00031.x

10.1080/01614949608006462

10.1038/35005040

10.1002/1521-3951(200107)226:1<57::AID-PSSB57>3.0.CO;2-L

10.13182/NT98-A2876

10.1016/S0022-3115(99)00195-6

10.1016/S0022-3115(99)00066-5

10.1016/j.jallcom.2006.11.203

10.1063/1.2713127

10.1063/1.3021162

10.1016/j.jnucmat.2011.10.033

10.1016/j.jnucmat.2006.02.055

10.1016/j.jnucmat.2008.12.311

10.1016/j.jnucmat.2010.11.091

10.1016/j.jnucmat.2010.05.001

10.1016/j.jnucmat.2011.05.009

10.1016/j.jnucmat.2012.01.021

10.1016/j.jnucmat.2007.01.214

10.1016/j.jnucmat.2006.04.004

10.1016/S0022-3115(03)00280-0

10.1016/S0168-583X(99)00661-8

10.1016/j.jnucmat.2006.02.067

Ziegler J. F., 1985, The Stopping and Range of Ions in Solids

10.1103/PhysRevB.86.054109

10.1103/PhysRevB.82.184105

10.1016/j.nimb.2012.01.017

10.1016/j.jnucmat.2011.12.021

10.1063/1.3236567

10.1103/PhysRevB.86.224103

10.1016/S0022-3115(99)00186-5

10.1016/S0168-583X(00)00497-3

10.1016/j.jallcom.2004.02.062

10.1016/S0168-583X(00)00643-1

10.1016/j.nimb.2003.11.072

10.1126/science.1145386

10.1016/j.nimb.2008.03.128

10.1051/epjap:2003060

10.1007/s00339-009-5294-z

10.1016/j.nimb.2008.03.161

10.1016/j.scriptamat.2010.05.032

10.1016/j.jnucmat.2006.04.013

10.1016/j.jnucmat.2014.07.053

10.1016/j.jnucmat.2013.06.033

10.1016/j.jnucmat.2003.09.001

10.1016/j.jnucmat.2006.02.015

10.1016/j.scriptamat.2007.11.007

10.1073/pnas.0730783100

10.1103/PhysRevB.82.104113

10.1063/1.2216791

10.1016/j.jnucmat.2009.05.011

10.1016/j.scriptamat.2010.04.043

10.1016/j.jnucmat.2011.04.022

10.1088/1674-1056/23/6/066105

10.1063/1.119191