Effects of Hafnium Oxide on Surface Potential and Drain Current Models for Subthreshold Short Channel Metal–Oxide–Semiconductor-Field-Effect-Transistor
Tóm tắt
Từ khóa
Tài liệu tham khảo
K. Joardar, K.K. Gullapalli, C.C. McAndrew, M.E. Burnham, A. Wild, An improved MOSFET model for circuit simulation. IEEE Trans. Electron Devices 45, 134–148 (1998)
G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. Van Langevelde, G.D.J. Smit, A.J. Scholten, D.B.M. Klaassen, PSP: an advanced surface-potential based MOSFET model for circuit simulation. IEEE Trans. Electron Devices 53, 1979–1993 (2006)
H. Chakrabarti, R. Maity, N. P. Maity, Analysis of surface potential for dual-material-double-gate MOSFET based on modeling and simulation. Microsyst. Technol. (2019). https://doi.org/10.1007/s00542-019-04386-3
R.V. Langevelde, F.M. Klassen, An explicit Surface-potential-based MOSFET model for circuit simulation. Solid State Electron. 44, 409–418 (2000)
T.L. Chen, G. Gildenblat, An extended analytical approximation for the MOSFET surface potential. Solid State Electron. 49, 267–270 (2005)
A.R. Boothroyd, S.W. Tarasewicz, C. Slaby, MISNAN: a physically based continuous MOSFET model for CAD applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10, 1512–1529 (1991)
M.M. Mattausch, U. Feldmann, A. Rahm, M. Bolu, D. Savignac, Unified complete MOSFET model for analysis of digital and analog circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15, 1–7 (1996)
S. Roy, A. Chatterjee, D.K. Sinha, R. Pirogova, S. Baishya, 2-D analytical modeling of surface potential and threshold voltage for vertical super-thin body FET. IEEE Trans. Electron Devices 64, 2106–2112 (1017)
N. Sadachika, D. Kitamaru, Y. Uetsuji, D. Navarro, M.M. Yusoff, T. Ezaki, H.J. Mattausch, M.M. Mattausch, Completely surface-potential based compact model of the fully depleted SOI MOSFET including short channel effects. IEEE Trans. Electron Devices 53, 2017–2024 (2006)
R. Saha, S. Baishya, B. Bhowmick, 3D Analytical model of surface potential, threshold voltage, and subthreshold swing in dual material gate (DMG) SOI FinFETs. J. Comput. Electron. 17, 153–162 (2018)
V. Narender, K.A. Gridhardas, Surface potential modeling of graded channel gate stack (GCGS) high-k dielectric dual material double gate (DMDG) MOSFET and analog/RF performance study. Silicon 10, 2865–2875 (2018)
B.H. Calhoun, A.P. Chandrakasan, Static noise margin variation for subthreshold SRAM in 65-nm CMOS. IEEE J. Solid-State Circuits 41, 1673–1679 (2006)
B.C. Paul, A. Raychowdhury, K. Roy, Device optimization for digital subthreshold logic operation. IEEE Trans. Electron Devices 52, 237–247 (2005)
S. Chakraborty, A. Mallik, C.K. Sarkar, Impact on halo dopingon the subthreshold performance of deep sub micrometer CMOS devices and circuits for ultralow power analog/mixed signal applications. IEEE Trans. Electron Devices 54, 241–248 (2007)
A. Wang, A. Chandrakasan, A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J. Solid-State Circuits 40, 310–319 (2005)
Y. Taur, D.A. Buchanan, W. Chen, D.J. Frank, K.E. Ismail, S.-H. Lo, G.A. Sai-Halasz, R.G. Viswanathan, H.-J.C. Wann, S.J. Wind, H.-S. Wong, CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997)
R. Gwoziecki, T. Skotnicki, Smart pockets: total suppression of roll-off and rollup, in IEEE Symposium on VLSI Technology (1999), pp. 91–92
H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, T. Kunio, Sub 50-nm physical gate length CMOS technology and beyond using steep halo. IEEE Trans. Electron Devices 49, 89–95 (2002)
K. Liu, J. Wu, J. Chen, A. Jain, Fluorine-assisted super halo for sub-50 nm transistors. IEEE Electron Device Lett. 24, 180–182 (2003)
A. Hori, A. Hiroki, H. Nakaoka, M. Segawa, T. Hori, Quarter-micrometer SPI (self-aligned pocket implantation) MOSFET’s and its application for low supply voltage operation. IEEE Trans. Electron Devices 42, 78–86 (1995)
A. Hori, M. Segawa, H. Shimomura, S. Kameyama, A self aligned pocket implantation (SPI) technology for 0.2-mu m dual gate CMOS. IEEE Electron Device Lett. 13, 174–176 (1992)
X. Chen, H. Zhao, Y. Xiong, F. Wei, H.J. Du, Z. Tang, B. Tang, J. Yan, Study of Hf–Ti–O thin film as high-k gate dielectric and application for ETSOI MOSFETs. J. Electron. Mater. 45, 4407–4411 (2016)
N.P. Maity, R. Maity, S. Baishya, A tunneling current model with a realistic barrier for ultra thin high-k dielectric ZrO2 material based MOS devices. Silicon 10, 1645–1652 (2018)
Y. Swami, S. Rai, Ultra thin high-k dielectric profile based NBTI compact model for nanoscale bulk MOSFET. Silicon 11, 1661–1671 (2019)
P. Banerjee, S.K. Sarkar, Modeling and analysis of a front high-k gate stack dual-material tri-gate Schottky barrier silicon-on-insulator MOSFET with a dual-material bottom gate. Silicon 11, 513–519 (2019)
N.P. Maity, R. Maity, R. Thapa, S. Baishya, A tunneling current density model for ultra thin HfO2 high-k dielectric material based MOS devices. Supperlattices Microstruct. 95, 24–32 (2016)
N.P. Maity, R. Maity, S. Baishya, Voltage and oxide thickness dependent tunneling current density and tunnel resistivity model: application to high-k material HfO2 based MOS devices. Supperlattices Microstruct. 111, 628–641 (2017)
R. Basak, B. Maiti, A. Mallik, Analytical model of gate leakage current through bilayer oxide stack in advanced MOSFET. Supperlattices Microstruct. 80, 20–31 (2015)
N.P. Maity, R. Maity, S. Baishya, An analytical model for the surface potential and threshold voltage of a double-gate heterojunction tunnel FinFET. J. Comput. Electron. 18, 65–75 (2019)
N. P. Maity, A. Pandeya, S. Chakraborty, M. Roy, High-k HfO2 based metal-oxide-semiconductor devices using silicon and silicon carbide semiconductor. J. Nano Electron. Phys. 4, 948–956 (2012)
N.P. Maity, R. Maity, S. Maity, S. Baishya, Comparative analysis of the quantum FinFET and trigate FinFET based on modeling and simulation. J. Comput. Electron. 18, 492–499 (2019)
N.P. Maity, A. Pandeya, S. Chakraborty, M. Roy, High-k HfO2 based metal-oxide-semiconductor devices using silicon and silicon carbide semiconductor. J. Nano-Electron. Phys. 4, 948–956 (2012)
K.W. Terrill, C. Hu, P.K. Ko, An analytical model for the channel electric field in MOSFETs with graded-drain structure. IEEE Electron Device Lett. 5, 440–442 (1984)
C.S. Ho, J.J. Liou, K. Huang, C. Cheng, An analytical subthreshold current model for pocket implanted NMOSFETs. IEEE Trans. Electron Devices 50, 1475–1479 (2003)
Y.-S. Pang, J.R. Brews, Analytical subthreshold surface potential model for pocket n-MOSFETs. IEEE Trans. Electron Devices 49, 2209–2216 (2002)
Z.-H. Liu, C. Hu, J.-H. Huang, T.-Y. Chan, M.-C. Jeng, P.K. Ko, Y.C. Cheng, Threshold voltage for deep submicrometer MOSFETs. IEEE Trans. Electron Devices 40, 86–95 (1993)
B. Yu, C.H.J. Wann, E.D. Nowak, K. Noda, C. Hu, Short-channel effect by lateral channel engineering in deep-submicrometer MOSFET’s. IEEE Trans. Electron Devices 44, 627–634 (1997)
Y.A. El-Mansy, A.R. Boothroyd, A simple 2-D model for IGFET operation in saturation region. IEEE Trans. Electron Devices 24, 254–262 (1977)
S. Baishya, A. Mallik, C.K. Sarkar, A subthreshold surface potential model fro short channel MOSFET taking into account the varying depth of channel depletion layer due to source and drain junction. IEEE Trans. Electron Devices 53, 507–514 (2006)
S. Baishya, A. Mallik, C.K. Sarkar, Subthreshold surface potential and drain current models for short channel pocket-implanted MOSFETs. Microelectron. Eng. 84, 653–662 (2007)