Effects of GTAW Dynamic Wire Feeding Frequencies on Fatigue Strength of ASTM A516-70 Steel Welded Joints
Tóm tắt
Từ khóa
Tài liệu tham khảo
RUDY, J. F. Development and Application of Dabber Gas Tungsten Arc Welding for Repair of Aircraft Engine, Seal Teeth. The American Society of Mechanical Engineers, New York, 1982. 4p. ASME 1982 International Gas Turbine Conference and Exhibit.
H. Geng, J. Li, J. Xiong, X. Lin and F. Zhang, Optimization of Wire Feed for GTAW Based Additive Manufacturing, J. Mater. Process. Technol., 2017, 243(2017), p 40–47. https://doi.org/10.1016/j.jmatprotec.2016.11.027ISSN0924-0136
R.H.G. Silva, C.R. Kauê, P.O. Marcelo and D. Giovani, Effect of Dynamic Wire in the GTAW Process, J. Mater. Process. Tech., 2019 https://doi.org/10.1016/j.jmatprotec.2019.01.033
R.H.G. Silva, L.E. dos Santos Paes, M.P. Okuyama et al., TIG Welding Process with Dynamic Feeding: A Characterization Approach, Int. J. Adv. Manuf. Technol., 2018, 96, p 4467. https://doi.org/10.1007/s00170-018-1929-6
C.R. Riffel, E.R.H.G. Silva, W. Haupt, L.E. da Silva and G. Dalpiaz, Effect of Dynamic Wire in the GTAW Process: Microstructure and Corrosion Resistance, J. Mater. Process. Tech., 2020 https://doi.org/10.1016/j.jmatprotec.2020.116758
I. Lukačević, Bo. Fuštar and D. Dujmovic, Fatigue Life Assessment Of Welded Cover Plate By Using Global And Local Approaches, ce/papers, 2017, 1, p 4. https://doi.org/10.1002/cepa.546
B. Fustar, I. Lukacevi et al., Review of Fatigue Assessment Methods for Welded Steel Structures, Adv. Civil Eng., 2018, 2018, p 3597356. https://doi.org/10.1155/2018/3597356
EN 1993-1-9/CEN, Eurocode 3: Design of Steel Structures, Part 1–9: Fatigue, European Committee for Standardization, Brussels, Belgium, 2005.
A. Hobbacher, Recommendations for Fatigue Design of Welded Joints and Components, IIW Document IIW-2259-15, International Institute of Welding, Cambridge, 2015.
M. Aygül, M. Bokesjö, M. Heshmati and M. Al-Emrani, A Comparative Study of Different Fatigue Failure Assessments of Welded Bridge Details, Int. J. Fatigue, 2013, 49, p 62–72.
M.P. Nascimento, H.J.C. Voorwald, C. da João and Payão Filho, Fatigue Strength of Tungsten Inert Gas-Repaired Weld Joints in Airplane Critical Structures, J. Mater. Process. Technol., 2011, 211, p 1126–1135.
M.P. Nascimento and H.J.C. Voorwald, Considerations on Corrosion and Weld Repair Effects on the Fatigue Strength of a Steel Structure Critical to the Flight-Safety, Int. J. Fatigue, 2010, 32(2010), p 1200–1209.
S.-C. Li, W.-C. Zhang, M.-L. Zhu and F.-Z. Xuan, On Specimen Design for High Cycle Fatigue Testing of Welded Joint, Int. J. Fatigue, 2020 https://doi.org/10.1016/j.ijfatigue.2020.105597
W.-C. Zhang, M.-L. Zhu, K. Wang and F.-Z. Xuan, Failure Mechanisms and Design of Dissimilar Welds of 9%Cr and CrMoV Steels Up to Very High Cycle Fatigue Regime, Int. J. Fatigue, 2018 https://doi.org/10.1016/j.ijfatigue.2018.04.032
M.-L. Zhu and F.-Z. Xuan, Failure Mechanisms and Fatigue Strength Reduction Factor of a Cr-Ni-Mo-V Steel Welded Joint up to Ultra-Long Life Regime, MATEC Web Conf., 2018, 165, p 21012. https://doi.org/10.1051/matecconf/201816521012
M.-L. Zhu, L.-L. Liu and F.-Z. Xuan, Effect of Frequency on Very High Cycle Fatigue Behavior of a Low Strength Cr-Ni-Mo-V Steel Welded Joint, Int. J. Fatigue, 2015 https://doi.org/10.1016/2015.03.027
W. Wu, M.-L. Zhu, X. Liu and F.-Z. Xuan, Effect of Temperature on High-Cycle Fatigue and Very High Cycle Fatigue Behaviours of a Low-Strength Cr-Ni-Mo-V Steel Welded Joint, Fatigue Fract. Eng. Mater. Struct. (FFEMS), 2016 https://doi.org/10.1111/ffe.12471
M.-L. Zhu, F.-Z. Xuan, D. Yan-Nan and T. Shan-Tung, Very High Cycle Fatigue Behavior of a Low Strength Welded Joint at Moderate Temperature, Int. J. Fatigue, 2012, 40, p 74–83. https://doi.org/10.1016/j.ijfatigue.2012.01.014
M.K. Chryssanthopoulos and T.D. Righiniotis, Fatigue Reliability of Welded Steel Structures, J. Constr. Steel Res., 2006, 62, p 1199–1209.
A. Shanyavskiy, Crack Path For Run-Out Specimens in Fatigue Tests is it Belonging to High-or Very-High-Cycle Fatigue Regime, Frattura ed Integrità Strutturale, 2015, 34, p 199–207. https://doi.org/10.3221/IGF-ESIS.34.2110.1007/s11665-020-04669-1
M.M. Pedersen, Thickness Effect in Fatigue of Welded Butt Joints: A Review of Experimental Works, Int. J. Steel Struct., 2019 https://doi.org/10.1007/s13296-019-00254-
S.A. David, S.S. Babu and J.M. Vitek, Welding: Solidification and Microstructure, JOM: J. Miner. Metals Mater. Soc., 2003, 55(6), p 14–20. https://doi.org/10.1007/s11837-003-0134-7
S. David and J. Vitek, d Principles of Weld Solidification and Microstructures. Int. Trends Weld. Sci. Technol., ASM, 147–157 (1993)
J. Gruzleski, Microstructure Development During Metal casting, American Foundrymen’s Society Inc, Des Plaines, 2000.
E. Vandersluis, A. Lombardi, C. Ravindran, A. Bios-Brochu, F. Chiesa and R. MacKay, Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads, Mater. Sci. Eng. A, 2015, 648, p 401–411.
E. Vandersluis and C. Ravindran, Comparison of Measurement Methods for Secondary Dendrite Arm Spacing, Metall. Microstruct. Anal., 2017, 6, p 89–94. https://doi.org/10.1007/s13632-016-0331-8
C.A. Schneider, W.S. Rasband and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, 2012, 9(7), p 671–675.
S. Boontein, N. Srisukhumbovornchai, J. Kajornchaiyakul and C. Limmaneevichitr, Reduction in Secondary Dendrite Arm Spacing in Cast Aluminum Alloy A356 by Sb Addition, Int. J. Cast Met. Res., 2011, 24(2), p 108–112.
D. Hanumantha Rao, G. Tagore and G. Ranga Janardhana, Evolution of Artificial Neural Network (ANN) Model For Predicting Secondary Dendrite Arm Spacing in Aluminum Alloy Casting, J. Braz. Soc. Mech. Sci. Eng., 2010, 32(3), p 276–281.
Y. Zou, Z. Xu and J. Zeng, Effect of SDAS on Homogenization of Al-Si-Mg Casting Alloys, Adv. Mater. Res., 2010, 97–101, p 1041–1044.
A. Mullis, L. Farrell, R. Cochrane and N. Adkins, Estimation of Cooling Rates During Close-Coupled Gas Atomization Using Secondary Dendrite Arm Spacing Measurement, Metall. Mater. Trans. B, 2013, 44B, p 992–999.
R. Pierer and C. Bernhard, On the Influence of Carbon on Secondary Dendrite Arm Spacing in Steel, J. Mater. Sci., 2008, 43, p 6938–6943.
ASTM A516/A516M: 17- Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service.
ASTM E466 -07: Standard Practice for Conducting Force Controlled Constant Axial Amplitude Fatigue Tests of Metallic Materials
M. Ferreira Fernandes, J.R.M. dos Santos, V.M. de Oliveira Velloso et al., AISI 4140 Steel Fatigue Performance: Cd Replacement by Electroplated Zn-Ni Alloy Coating, J. Mater. Eng. Perform., 2020, 29, p 1567–1578.
ASTM E739−10 (Reapproved 2015): Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data.