Tác động của dầu cá kết hợp với selenium và kẽm lên suy giảm trí nhớ và học tập ở chuột già và quá trình xử lý protein tiền thân amyloid

Biological Trace Element Research - Tập 199 - Trang 1855-1863 - 2020
Chao-xu Fu1, Lin Dai1, Xiu-yuan Yuan1, Yan-ji Xu1
1Department of Preventive Medicine, Medical College of Yanbian University, Yanji, China

Tóm tắt

Bệnh Alzheimer được đặc trưng bởi sự tích tụ của peptide amyloid-beta (Aβ) thành mảng và búi sợi thần kinh. Peptide Aβ được hình thành từ sự cắt đứt protein tiền thân beta-amyloid (APP) bởi enzyme β- và γ-secretase. Nghiên cứu này được thực hiện để điều tra tác động của dầu cá (hay axit eicosapentaenoic (EPA) và axit docosahexaenoic (DHA)), selenium và kẽm lên suy giảm học tập và trí nhớ ở mô hình chuột già và trên APP. Chúng tôi thực hiện các bài kiểm tra mê cung nước Morris và bệ ghi cho chuột đực Kunming (10/con nhóm) phân nhóm thành nhóm đối chứng và nhóm mô hình lão hóa do d-galactose gây ra, được điều trị bằng dung môi, dầu cá, dầu cá + selenium, dầu cá + selenium + kẽm, và nhóm đối chứng dương (chiết xuất nhân sâm đỏ). Dầu cá + kẽm + selenium trong 7 tuần đã cải thiện đáng kể suy giảm học tập và trí nhớ ở động vật mô hình lão hóa trong các bài kiểm tra mê cung nước Morris và bệ ghi, được chứng minh bằng thời gian ủ ngắn hơn và số lỗi giảm. Phân tích in vitro về hàm lượng Aβ1–40 trong tế bào CHO chuyển gen APP695 cho thấy có sự giảm sau khi điều trị bằng EPA, DHA, và sự kết hợp của chúng với selenium hoặc selenium và kẽm. Tham số hoạt động của β- và γ-secretase cho thấy sự giảm trong tế bào PC12 và huyết thanh chuột, cũng như sự giảm ở mức protein enzyme 1 cắt APP tại vị trí β và presenilin 1 trong tế bào PC12 và huyết thanh chuột. Tổng hợp lại, kết quả của chúng tôi cho thấy rằng dầu cá kết hợp với selenium và kẽm đã ức chế quá trình xử lý APP và giảm thiểu suy giảm học tập và trí nhớ ở mô hình chuột lão hóa.

Từ khóa

#Alzheimer #peptide amyloid-beta #APP #dầu cá #selenium #kẽm #chuột già #suy giảm trí nhớ #xử lý protein tiền thân amyloid

Tài liệu tham khảo

Philippens IH, Ormel PR, Baarends G, Johansson M, Remarque EJ, Doverskog M (2017) Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer’s disease. J Alzheimers Dis 55(1):101–113. https://doi.org/10.3233/JAD-160673 Jakob-Roetne R, Jacobsen H (2009) Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed Eng 48(17):3030–3059. https://doi.org/10.1002/anie.200802808 Hernandez-Rapp J, Rainone S, Goupil C, Dorval V, Smith PY, Saint-Pierre M, Vallee M, Planel E, Droit A, Calon F, Cicchetti F, Hebert SS (2016) microRNA-132/212 deficiency enhances Abeta production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci Rep 6:30953. https://doi.org/10.1038/srep30953 Majd S, Power J, Majd Z (2019) Alzheimer’s disease and cancer: when two monsters cannot be together. Front Neurosci 13:155. https://doi.org/10.3389/fnins.2019.00155 Wang Y, Liu C, Wang H, Jiang Y, Wang P, Shang H (2019) Systematic review of basic research on Alzheimer’s disease with Shen Zhi Ling oral liquid. Evid Based Complement Alternat Med 2019:8216714–8216710. https://doi.org/10.1155/2019/8216714 Elbaum-Garfinkle S (2019) Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem 294(18):7160–7168. https://doi.org/10.1074/jbc.REV118.001188 Gomes E, Shorter J (2019) The molecular language of membraneless organelles. J Biol Chem 294(18):7115–7127. https://doi.org/10.1074/jbc.TM118.001192 Dinkova-Kostova AT, Kostov RV, Kazantsev AG (2018) The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J 285(19):3576–3590. https://doi.org/10.1111/febs.14379 Raefsky SM, Furman R, Milne G, Pollock E, Axelsen P, Mattson MP, Shchepinov MS (2018) Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid beta-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 66:165–176. https://doi.org/10.1016/j.neurobiolaging.2018.02.024 Tcw J, Goate AM (2017) Genetics of beta-amyloid precursor protein in Alzheimer’s disease. Cold Spring Harb Perspect Med 7(6). https://doi.org/10.1101/cshperspect.a024539 Fan YG, Guo T, Han XR, Liu JL, Cai YT, Xue H, Huang XS, Li YC, Wang ZY, Guo C (2019) Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine 45:393–407. https://doi.org/10.1016/j.ebiom.2019.07.014 Ghosh AK, Osswald HL (2014) BACE1 (beta-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 43(19):6765–6813. https://doi.org/10.1039/c3cs60460h Sun L, Zhou R, Yang G, Shi Y (2017) Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc Natl Acad Sci U S A 114(4):E476–E485. https://doi.org/10.1073/pnas.1618657114 Shinohara M, Tachibana M, Kanekiyo T, Bu G (2017) Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J Lipid Res 58(7):1267–1281. https://doi.org/10.1194/jlr.R075796 Xiang J, Zhang W, Cai XF, Cai M, Yu ZH, Yang F, Zhu W, Li XT, Wu T, Zhang JS, Cai DF (2019) DNA Aptamers targeting BACE1 reduce amyloid levels and rescue neuronal deficiency in cultured cells. Mol Ther Nucleic Acids 16:302–312. https://doi.org/10.1016/j.omtn.2019.02.025 Binyamin O, Nitzan K, Frid K, Ungar Y, Rosenmann H, Gabizon R (2019) Brain targeting of 9c,11t-conjugated linoleic acid, a natural calpain inhibitor, preserves memory and reduces Abeta and P25 accumulation in 5XFAD mice. Sci Rep 9(1):18437. https://doi.org/10.1038/s41598-019-54971-9 Echeverria F, Valenzuela R, Catalina Hernandez-Rodas M, Valenzuela A (2017) Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: new dietary sources. Prostaglandins Leukot Essent Fat Acids 124:1–10. https://doi.org/10.1016/j.plefa.2017.08.001 Cosin-Tomas M, Senserrich J, Arumi-Planas M, Alquezar C, Pallas M, Martin-Requero A, Sunol C, Kaliman P, Sanfeliu C (2019) Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. Nutrients 11(8). https://doi.org/10.3390/nu11081764 Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63(11):1029–1049. https://doi.org/10.1002/syn.20683 Alehagen U, Johansson P, Bjornstedt M, Rosen A, Dahlstrom U (2013) Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol 167(5):1860–1866. https://doi.org/10.1016/j.ijcard.2012.04.156 Zhu JD, Wang JJ, Zhang XH, Yu Y, Kang ZS (2018) Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion. Neural Regen Res 13(4):664–672. https://doi.org/10.4103/1673-5374.230292 Barnhart CD, Yang D, Lein PJ (2015) Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 10(4):e0124521. https://doi.org/10.1371/journal.pone.0124521 Seok H, Lee M, Shin E, Yun MR, Lee YH, Moon JH, Kim E, Lee PH, Lee BW, Kang ES, Lee HC, Cha BS (2019) Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci Rep 9(1):4414. https://doi.org/10.1038/s41598-019-40736-x Zhou X, Wang L, Xiao W, Su Z, Zheng C, Zhang Z, Wang Y, Xu B, Yang X, Hoi MPM (2019) Memantine improves cognitive function and alters hippocampal and cortical proteome in triple transgenic mouse model of Alzheimer’s disease. Exp Neurobiol 28(3):390–403. https://doi.org/10.5607/en.2019.28.3.390 Li GZ, Liu F, Xu C, Li JY, Xu YJ (2018) Selenium and zinc against Abeta25-35-induced cytotoxicity and tau phosphorylation in PC12 cells and inhibits gamma-cleavage of APP. Biol Trace Elem Res 184(2):442–449. https://doi.org/10.1007/s12011-017-1162-4 Jia D, Heng LJ, Yang RH, Gao GD (2014) Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-kappaB-mediated inflammatory pathways. Neuroscience 258:228–237. https://doi.org/10.1016/j.neuroscience.2013.11.016 Yang RH, Wang F, Hou XH, Cao ZP, Wang B, Xu XN, Hu SJ (2012) Dietary omega-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability. Neuroscience 212:93–103. https://doi.org/10.1016/j.neuroscience.2012.04.005 Yousef M, Kavraal S, Artis AS, Suer C (2019) Effects of chronic and acute lithium treatment on the long-term potentiation and spatial memory in adult rats. Clin Psychopharmacol Neurosci 17(2):233–243. https://doi.org/10.9758/cpn.2019.17.2.233 Li JG, Chu J, Barrero C, Merali S, Pratico D (2014) Homocysteine exacerbates beta-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol 75(6):851–863. https://doi.org/10.1002/ana.24145 Fang F, Yu Q, Arancio O, Chen D, Gore SS, Yan SS, Yan SF (2018) RAGE mediates Abeta accumulation in a mouse model of Alzheimer’s disease via modulation of beta- and gamma-secretase activity. Hum Mol Genet 27(6):1002–1014. https://doi.org/10.1093/hmg/ddy017 Van der Jeugd A, Parra-Damas A, Baeta-Corral R, Soto-Faguas CM, Ahmed T, LaFerla FM, Gimenez-Llort L, D’Hooge R, Saura CA (2018) Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice. Sci Rep 8(1):6431. https://doi.org/10.1038/s41598-018-24741-0 Moncayo R, Ortner K (2015) Multifactorial determinants of cognition - thyroid function is not the only one. BBA Clin 3:289–298. https://doi.org/10.1016/j.bbacli.2015.04.002 Bazazzadegan N, Dehghan Shasaltaneh M, Saliminejad K, Kamali K, Banan M, Khorram Khorshid HR (2017) Effects of herbal compound (IMOD) on behavior and expression of Alzheimer’s disease related genes in streptozotocin-rat model of sporadic Alzheimer’s disease. Adv Pharm Bull 7(3):491–494. https://doi.org/10.15171/apb.2017.060 Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P (2019) GSAP modulates gamma-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci U S A 116(13):6385–6390. https://doi.org/10.1073/pnas.1820160116 Chalatsa I, Arvanitis DA, Koulakiotis NS, Giagini A, Skaltsounis AL, Papadopoulou-Daifoti Z, Tsarbopoulos A, Sanoudou D (2019) The Crocus sativus compounds trans-crocin 4 and trans-crocetin modulate the amyloidogenic pathway and tau misprocessing in Alzheimer disease neuronal cell culture models. Front Neurosci 13:249. https://doi.org/10.3389/fnins.2019.00249 Wang Z, Xu Q, Cai F, Liu X, Wu Y, Song W (2019) BACE2, a conditional beta-secretase, contributes to Alzheimer’s disease pathogenesis. JCI Insight 4(1). https://doi.org/10.1172/jci.insight.123431 Koivisto H, Grimm MO, Rothhaar TL, Berkecz R, Lutjohann DD, Giniatullina R, Takalo M, Miettinen PO, Lahtinen HM, Giniatullin R, Penke B, Janaky T, Broersen LM, Hartmann T, Tanila H (2014) Special lipid-based diets alleviate cognitive deficits in the APPswe/PS1dE9 transgenic mouse model of Alzheimer’s disease independent of brain amyloid deposition. J Nutr Biochem 25(2):157–169. https://doi.org/10.1016/j.jnutbio.2013.09.015 Dekker AD, Fortea J, Blesa R, De Deyn PP (2017) Cerebrospinal fluid biomarkers for Alzheimer’s disease in Down syndrome. Alzheimers Dement (Amst) 8:1–10. https://doi.org/10.1016/j.dadm.2017.02.006