Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation
Nano Materials Science - 2023
Tài liệu tham khảo
Alami, 2020, Synthesis, characterization and applications of FeCu alloys[J], Appl. Surf. Sci. Adv., 1, 10.1016/j.apsadv.2020.100027
Wang, 2020, Confined Fe–Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction[J], Adv. Mater., 32, 10.1002/adma.202004382
Liu, 2019, The effect of dislocations on irradiation-induced vacancy-like defects in FeCu alloy and reactor pressure vessel steel[J], J. Nucl. Mater., 524, 80, 10.1016/j.jnucmat.2019.06.040
Shi, 2015, Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy[J], Mater. Sci. Eng., A, 636, 43, 10.1016/j.msea.2015.03.081
Wu, 2009, Microstructure and properties of Cu–Fe microcomposites with prior homogenizing treatments[J], J. Alloys Compd., 481, 236, 10.1016/j.jallcom.2009.03.078
Wu, 2021, Effect of Fe content on the microstructure and mechanical and electrical properties of Cu-Fe in situ composites[J], J. Mater. Eng. Perform., 30, 5939, 10.1007/s11665-021-05579-6
Turchanin, 2003, Thermodynamics of alloys and phase equilibria in the copper-iron system[J], J. Phase Equil., 24, 307, 10.1361/105497103770330280
Zhang, 2022, Influence of minor Ag addition on the microstructure and properties of powder metallurgy Cu-10 wt% Fe alloy[J], J. Alloys Compd., 904, 10.1016/j.jallcom.2022.163983
El-Egamy, 2008, Corrosion and corrosion inhibition of Cu–20% Fe alloy in sodium chloride solution[J], Corrosion Sci., 50, 928, 10.1016/j.corsci.2007.11.018
Liu, 2018, Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J], J. Alloys Compd., 742, 99, 10.1016/j.jallcom.2018.01.306
Sanin, 2020, Production of the 70% Cu–30% Fe alloy by SHS metallurgy and electrometallurgy: comparative analysis of microstructures[J], Russ. J. Non-Ferrous Metals, 61, 119, 10.3103/S1067821220010137
Uenishi, 1992, Mechanical alloying in the Fe-Cu system[J], Int. J. Mater. Res., 83, 132, 10.1515/ijmr-1992-830212
Mojtahedi, 2013, Investigation on the formation of Cu–Fe nano crystalline super-saturated solid solution developed by mechanical alloying[J], J. Alloys Compd., 550, 380, 10.1016/j.jallcom.2012.10.112
Wang, 2017, Study of microstructure evolution and properties of Cu-Fe microcomposites produced by a pre-alloyed powder method[J], Mater. Des., 126, 64, 10.1016/j.matdes.2017.04.017
Zhang, 2020, Microstructure and mechanical properties of a Cu-Fe-Nb alloy with a high product of the strength times the elongation[J], Mater. Today Commun., 25
Abbas, 2018, Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys, J. Alloys Compd., 741, 1188, 10.1016/j.jallcom.2018.01.245
Jin, 2018, Irradiation evolution of Cu precipitates in Fe1.0Cu alloy studied by positron annihilation spectroscopy, J. Nucl. Mater., 499, 65, 10.1016/j.jnucmat.2017.11.011
Bai, 2017, Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at%Cu alloy under neutron irradiation, J. Nucl. Mater., 495, 442, 10.1016/j.jnucmat.2017.08.042
Jin, 2016, Correlation between Cu precipitates and irradiation defects in Fe–Cu model alloys investigated by positron annihilation spectroscopy, Acta Mater., 103, 658, 10.1016/j.actamat.2015.10.051
Gludovatz, 2010, Fracture toughness of polycrystalline tungsten alloys[J], Int. J. Refract. Metals Hard Mater., 28, 674, 10.1016/j.ijrmhm.2010.04.007
Briant, 2001, Grain boundary structure, chemistry, and failure[J], Mater. Sci. Technol., 17, 1317, 10.1179/026708301101509331
Frolov, 2018, Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects[J], Acta Mater., 159, 123, 10.1016/j.actamat.2018.07.051
Huang, 2021, Twinning-assisted dynamic adjustment of grain boundary mobility[J], Nat. Commun., 12, 1, 10.1038/s41467-021-27002-3
Borovikov, 2018, Effects of Ag and Zr solutes on dislocation emission from Σ11 (332)[110] symmetric tilt grain boundaries in Cu: bigger is not always better[J], Int. J. Plast., 109, 79, 10.1016/j.ijplas.2018.05.009
Sun, 2021, A molecular dynamics study of path-dependent grain boundary properties in nanocrystals prepared using different methods[J], Scripta Mater., 205, 10.1016/j.scriptamat.2021.114183
Watanabe, 1984, An approach to grain boundary design for strong and ductile polycrystals[J], Res. Mech., 11, 47
Holm, 2010, Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni[J], Scripta Mater., 63, 905, 10.1016/j.scriptamat.2010.06.040
Freitas, 2018, Free energy of grain boundary phases: atomistic calculations for Σ 5 (310)[001] grain boundary in Cu[J], Phys. Rev. Mater., 2
Olmsted, 2009, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy[J], Acta Mater., 57, 3694, 10.1016/j.actamat.2009.04.007
Liu, 2004, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J], J. Cryst. Growth, 264, 385, 10.1016/j.jcrysgro.2003.12.021
Parajuli, 2019, Misorientation dependence grain boundary complexions in< 111> symmetric tilt Al grain boundaries[J], Acta Mater., 181, 216, 10.1016/j.actamat.2019.09.010
Chandra, 2022, An atomistic analysis of the effect of grain boundary and the associated deformation mechanisms during plain strain compression of a Cu bicrystal[J], Comput. Mater. Sci., 202, 10.1016/j.commatsci.2021.110953
Shimokawa, 2022, A novel work hardening mechanism of nanoscale materials by grain boundary transformation[J], Acta Mater., 224, 10.1016/j.actamat.2021.117536
Othen, 1994, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, Philos. Mag. A, 70, 1, 10.1080/01418619408242533
Shu, 2018, Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: atom probe tomography reconstruction implications, Acta Mater., 146, 237, 10.1016/j.actamat.2017.12.006
Jeon, 2021, Reversible disorder-order transitions in atomic crystal nucleation, Science, 371, 498, 10.1126/science.aaz7555
Tang, 2021, Unique surface patterns emerging during solidification of liquid metal alloys, Nat. Nanotechnol., 16, 431, 10.1038/s41565-020-00835-7
Merkle, 1992, Low-energy configurations of symmetric and asymmetric tilt grain boundaries[J], Philos. Mag. A, 65, 513, 10.1080/01418619208201536
Fu, 2022
Xu, 2022, Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries[J], Acta Mater., 226, 10.1016/j.actamat.2022.117640
Campbell, 2004, Copper segregation to the Σ5 (310)/[001] symmetric tilt grain boundary in aluminum[J], Interface Sci., 12, 165, 10.1023/B:INTS.0000028647.72322.90
Zhao, 2018, Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary[J], Acta Mater., 145, 235, 10.1016/j.actamat.2017.12.023
Xue, 2021, Segregation behavior of alloying elements at Ni Σ5 [001](210) symmetrical tilt grain boundary in nickel-based superalloys and their stabilization and strengthening mechanisms for the grain boundary[J], Mater. Chem. Phys., 258, 10.1016/j.matchemphys.2020.123977
Brokman, 1981, Coincidence lattice model for the structure and energy of grain boundaries[J], Acta Metall., 29, 1703, 10.1016/0001-6160(81)90005-5
Randle, 2001, The coincidence site lattice and the ‘sigma enigma’[J], Mater. Char., 47, 411, 10.1016/S1044-5803(02)00193-6
Sadananda, 1974, Extension of the unified theory of grain boundaries. I. Structure of the boundaries[J], J. Appl. Phys., 45, 1521, 10.1063/1.1663454
Marcinkowski, 1973, A unified theory of twist boundaries[J], Phys. Status Solidi, 19, 597, 10.1002/pssa.2210190225
Salloom, 2022, Atomic level simulations of the phase stability and stacking fault energy of FeCoCrMnSi high entropy alloy[J], Model. Simulat. Mater. Sci. Eng., 30, 10.1088/1361-651X/ac860d
Wang, 2020, Atomic deformation mechanism and interface toughening in metastable high entropy alloy[J], Mater. Today, 37, 64, 10.1016/j.mattod.2020.02.017
Shubhank, 2014, Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system[J], Calphad, 45, 127, 10.1016/j.calphad.2013.12.002
He, 2006, Solidification microstructure and dynamics of metastab-le phase transformation in undercooled liquid Cu–Fe alloys[J], Acta Mater., 54, 1749, 10.1016/j.actamat.2005.12.023
Atomsk, 2015, A tool for manipulating and converting atomic data files[J], Comput. Phys. Commun., 197, 212, 10.1016/j.cpc.2015.07.012
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Bonny, 2009, Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing, Philos. Mag. A, 89, 3531, 10.1080/14786430903299824
Eom, 2021, General trends in core–shell preferences for bimetallic nanoparticles[J], ACS Nano, 15, 8883, 10.1021/acsnano.1c01500
Wu, 2020, Atomistic mechanism and probability determination of the cutting of Guinier-Preston zones by edge dislocations in dilute Al-Cu alloys[J], Phys. Rev. Mater., 4
Sangid, 2011, Energy of slip transmission and nucleation at grain boundaries[J], Acta Mater., 59, 283, 10.1016/j.actamat.2010.09.032
Bean, 2016, Origin of differences in the excess volume of copper and nickel grain boundaries[J], Acta Mater., 110, 246, 10.1016/j.actamat.2016.02.040
Sun, 2020, Temperature dependence of grain boundary excess free volume[J], Scripta Mater., 178, 71, 10.1016/j.scriptamat.2019.10.046
Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simulat. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012
Bai, 2022, Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle[J], Mater. Res. Lett., 10, 343, 10.1080/21663831.2022.2050957
Tschopp, 2007, Asymmetric tilt grain boundary structure and energy in copper and aluminium[J], Phil. Mag., 87, 3871, 10.1080/14786430701455321
Wang, 2022, The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study[J], J. Mol. Model., 28, 47, 10.1007/s00894-022-05037-7
Cui, 2021, Molecular dynamics study on tensile strength of twist grain boundary structures under uniaxial tension in copper[J], Vacuum, 184, 10.1016/j.vacuum.2020.109874
Steyskal, 2012, Direct experimental determination of grain boundary excess volume in metals[J], Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.055504
Oberdorfer, 2014, Grain boundary excess volume and defect annealing of copper after high-pressure torsion[J], Acta Mater., 68, 189, 10.1016/j.actamat.2013.12.036
Frank, 1950, Multiplication processes for slow moving dislocations[J], Phys. Rev., 79, 722, 10.1103/PhysRev.79.722
Mahjoub, 2018, General trends between solute segregation tendency and grain boundary character in aluminum-An ab inito study[J], Acta Mater., 158, 257, 10.1016/j.actamat.2018.07.069
Zhang, 2010, Structure and stability of fe nanocrystals: an atomistic study[J], J. Phys. Chem. C, 114, 18841, 10.1021/jp107709q
Wen, 2012, Enhanced thermal stability of Au@ Pt nanoparticles by tuning shell thickness: insights from atomistic simulations[J], J. Mater. Chem., 22, 7380, 10.1039/c2jm16187g
Shen, 2013, Size dependence and phase transition during melting of fcc-Fe nanoparticles: a molecular dynamics simulation[J], Appl. Surf. Sci., 277, 7, 10.1016/j.apsusc.2013.03.017
Cohen, 1966, Melting of copper, silver, and gold at high pressures[J], Phys. Rev., 145, 519, 10.1103/PhysRev.145.519