Effects of Fe solid solute on grain boundaries of bi-crystal Cu: A molecular dynamics simulation

Shuohan Yang1, Hongwei Bao1, Huizhong Bai1, Yan Li1, Haodong Xu1, Fei Ma1
1State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

Tài liệu tham khảo

Alami, 2020, Synthesis, characterization and applications of FeCu alloys[J], Appl. Surf. Sci. Adv., 1, 10.1016/j.apsadv.2020.100027 Wang, 2020, Confined Fe–Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction[J], Adv. Mater., 32, 10.1002/adma.202004382 Liu, 2019, The effect of dislocations on irradiation-induced vacancy-like defects in FeCu alloy and reactor pressure vessel steel[J], J. Nucl. Mater., 524, 80, 10.1016/j.jnucmat.2019.06.040 Shi, 2015, Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy[J], Mater. Sci. Eng., A, 636, 43, 10.1016/j.msea.2015.03.081 Wu, 2009, Microstructure and properties of Cu–Fe microcomposites with prior homogenizing treatments[J], J. Alloys Compd., 481, 236, 10.1016/j.jallcom.2009.03.078 Wu, 2021, Effect of Fe content on the microstructure and mechanical and electrical properties of Cu-Fe in situ composites[J], J. Mater. Eng. Perform., 30, 5939, 10.1007/s11665-021-05579-6 Turchanin, 2003, Thermodynamics of alloys and phase equilibria in the copper-iron system[J], J. Phase Equil., 24, 307, 10.1361/105497103770330280 Zhang, 2022, Influence of minor Ag addition on the microstructure and properties of powder metallurgy Cu-10 wt% Fe alloy[J], J. Alloys Compd., 904, 10.1016/j.jallcom.2022.163983 El-Egamy, 2008, Corrosion and corrosion inhibition of Cu–20% Fe alloy in sodium chloride solution[J], Corrosion Sci., 50, 928, 10.1016/j.corsci.2007.11.018 Liu, 2018, Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J], J. Alloys Compd., 742, 99, 10.1016/j.jallcom.2018.01.306 Sanin, 2020, Production of the 70% Cu–30% Fe alloy by SHS metallurgy and electrometallurgy: comparative analysis of microstructures[J], Russ. J. Non-Ferrous Metals, 61, 119, 10.3103/S1067821220010137 Uenishi, 1992, Mechanical alloying in the Fe-Cu system[J], Int. J. Mater. Res., 83, 132, 10.1515/ijmr-1992-830212 Mojtahedi, 2013, Investigation on the formation of Cu–Fe nano crystalline super-saturated solid solution developed by mechanical alloying[J], J. Alloys Compd., 550, 380, 10.1016/j.jallcom.2012.10.112 Wang, 2017, Study of microstructure evolution and properties of Cu-Fe microcomposites produced by a pre-alloyed powder method[J], Mater. Des., 126, 64, 10.1016/j.matdes.2017.04.017 Zhang, 2020, Microstructure and mechanical properties of a Cu-Fe-Nb alloy with a high product of the strength times the elongation[J], Mater. Today Commun., 25 Abbas, 2018, Effect of composition and powder size on magnetic properties of rapidly solidified copper-iron alloys, J. Alloys Compd., 741, 1188, 10.1016/j.jallcom.2018.01.245 Jin, 2018, Irradiation evolution of Cu precipitates in Fe1.0Cu alloy studied by positron annihilation spectroscopy, J. Nucl. Mater., 499, 65, 10.1016/j.jnucmat.2017.11.011 Bai, 2017, Modeling copper precipitation hardening and embrittlement in a dilute Fe-0.3at%Cu alloy under neutron irradiation, J. Nucl. Mater., 495, 442, 10.1016/j.jnucmat.2017.08.042 Jin, 2016, Correlation between Cu precipitates and irradiation defects in Fe–Cu model alloys investigated by positron annihilation spectroscopy, Acta Mater., 103, 658, 10.1016/j.actamat.2015.10.051 Gludovatz, 2010, Fracture toughness of polycrystalline tungsten alloys[J], Int. J. Refract. Metals Hard Mater., 28, 674, 10.1016/j.ijrmhm.2010.04.007 Briant, 2001, Grain boundary structure, chemistry, and failure[J], Mater. Sci. Technol., 17, 1317, 10.1179/026708301101509331 Frolov, 2018, Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects[J], Acta Mater., 159, 123, 10.1016/j.actamat.2018.07.051 Huang, 2021, Twinning-assisted dynamic adjustment of grain boundary mobility[J], Nat. Commun., 12, 1, 10.1038/s41467-021-27002-3 Borovikov, 2018, Effects of Ag and Zr solutes on dislocation emission from Σ11 (332)[110] symmetric tilt grain boundaries in Cu: bigger is not always better[J], Int. J. Plast., 109, 79, 10.1016/j.ijplas.2018.05.009 Sun, 2021, A molecular dynamics study of path-dependent grain boundary properties in nanocrystals prepared using different methods[J], Scripta Mater., 205, 10.1016/j.scriptamat.2021.114183 Watanabe, 1984, An approach to grain boundary design for strong and ductile polycrystals[J], Res. Mech., 11, 47 Holm, 2010, Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni[J], Scripta Mater., 63, 905, 10.1016/j.scriptamat.2010.06.040 Freitas, 2018, Free energy of grain boundary phases: atomistic calculations for Σ 5 (310)[001] grain boundary in Cu[J], Phys. Rev. Mater., 2 Olmsted, 2009, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy[J], Acta Mater., 57, 3694, 10.1016/j.actamat.2009.04.007 Liu, 2004, Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation[J], J. Cryst. Growth, 264, 385, 10.1016/j.jcrysgro.2003.12.021 Parajuli, 2019, Misorientation dependence grain boundary complexions in< 111> symmetric tilt Al grain boundaries[J], Acta Mater., 181, 216, 10.1016/j.actamat.2019.09.010 Chandra, 2022, An atomistic analysis of the effect of grain boundary and the associated deformation mechanisms during plain strain compression of a Cu bicrystal[J], Comput. Mater. Sci., 202, 10.1016/j.commatsci.2021.110953 Shimokawa, 2022, A novel work hardening mechanism of nanoscale materials by grain boundary transformation[J], Acta Mater., 224, 10.1016/j.actamat.2021.117536 Othen, 1994, High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe, Philos. Mag. A, 70, 1, 10.1080/01418619408242533 Shu, 2018, Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: atom probe tomography reconstruction implications, Acta Mater., 146, 237, 10.1016/j.actamat.2017.12.006 Jeon, 2021, Reversible disorder-order transitions in atomic crystal nucleation, Science, 371, 498, 10.1126/science.aaz7555 Tang, 2021, Unique surface patterns emerging during solidification of liquid metal alloys, Nat. Nanotechnol., 16, 431, 10.1038/s41565-020-00835-7 Merkle, 1992, Low-energy configurations of symmetric and asymmetric tilt grain boundaries[J], Philos. Mag. A, 65, 513, 10.1080/01418619208201536 Fu, 2022 Xu, 2022, Thermally stable nanostructured Al-Mg alloy with relaxed grain boundaries[J], Acta Mater., 226, 10.1016/j.actamat.2022.117640 Campbell, 2004, Copper segregation to the Σ5 (310)/[001] symmetric tilt grain boundary in aluminum[J], Interface Sci., 12, 165, 10.1023/B:INTS.0000028647.72322.90 Zhao, 2018, Segregation of Mg, Cu and their effects on the strength of Al Σ5 (210)[001] symmetrical tilt grain boundary[J], Acta Mater., 145, 235, 10.1016/j.actamat.2017.12.023 Xue, 2021, Segregation behavior of alloying elements at Ni Σ5 [001](210) symmetrical tilt grain boundary in nickel-based superalloys and their stabilization and strengthening mechanisms for the grain boundary[J], Mater. Chem. Phys., 258, 10.1016/j.matchemphys.2020.123977 Brokman, 1981, Coincidence lattice model for the structure and energy of grain boundaries[J], Acta Metall., 29, 1703, 10.1016/0001-6160(81)90005-5 Randle, 2001, The coincidence site lattice and the ‘sigma enigma’[J], Mater. Char., 47, 411, 10.1016/S1044-5803(02)00193-6 Sadananda, 1974, Extension of the unified theory of grain boundaries. I. Structure of the boundaries[J], J. Appl. Phys., 45, 1521, 10.1063/1.1663454 Marcinkowski, 1973, A unified theory of twist boundaries[J], Phys. Status Solidi, 19, 597, 10.1002/pssa.2210190225 Salloom, 2022, Atomic level simulations of the phase stability and stacking fault energy of FeCoCrMnSi high entropy alloy[J], Model. Simulat. Mater. Sci. Eng., 30, 10.1088/1361-651X/ac860d Wang, 2020, Atomic deformation mechanism and interface toughening in metastable high entropy alloy[J], Mater. Today, 37, 64, 10.1016/j.mattod.2020.02.017 Shubhank, 2014, Critical evaluation and thermodynamic optimization of Fe–Cu, Cu–C, Fe–C binary systems and Fe–Cu–C ternary system[J], Calphad, 45, 127, 10.1016/j.calphad.2013.12.002 He, 2006, Solidification microstructure and dynamics of metastab-le phase transformation in undercooled liquid Cu–Fe alloys[J], Acta Mater., 54, 1749, 10.1016/j.actamat.2005.12.023 Atomsk, 2015, A tool for manipulating and converting atomic data files[J], Comput. Phys. Commun., 197, 212, 10.1016/j.cpc.2015.07.012 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Bonny, 2009, Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing, Philos. Mag. A, 89, 3531, 10.1080/14786430903299824 Eom, 2021, General trends in core–shell preferences for bimetallic nanoparticles[J], ACS Nano, 15, 8883, 10.1021/acsnano.1c01500 Wu, 2020, Atomistic mechanism and probability determination of the cutting of Guinier-Preston zones by edge dislocations in dilute Al-Cu alloys[J], Phys. Rev. Mater., 4 Sangid, 2011, Energy of slip transmission and nucleation at grain boundaries[J], Acta Mater., 59, 283, 10.1016/j.actamat.2010.09.032 Bean, 2016, Origin of differences in the excess volume of copper and nickel grain boundaries[J], Acta Mater., 110, 246, 10.1016/j.actamat.2016.02.040 Sun, 2020, Temperature dependence of grain boundary excess free volume[J], Scripta Mater., 178, 71, 10.1016/j.scriptamat.2019.10.046 Stukowski, 2010, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simulat. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/1/015012 Bai, 2022, Universal Trend in the dynamic relaxations of tilted metastable grain boundaries during ultrafast thermal cycle[J], Mater. Res. Lett., 10, 343, 10.1080/21663831.2022.2050957 Tschopp, 2007, Asymmetric tilt grain boundary structure and energy in copper and aluminium[J], Phil. Mag., 87, 3871, 10.1080/14786430701455321 Wang, 2022, The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study[J], J. Mol. Model., 28, 47, 10.1007/s00894-022-05037-7 Cui, 2021, Molecular dynamics study on tensile strength of twist grain boundary structures under uniaxial tension in copper[J], Vacuum, 184, 10.1016/j.vacuum.2020.109874 Steyskal, 2012, Direct experimental determination of grain boundary excess volume in metals[J], Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.055504 Oberdorfer, 2014, Grain boundary excess volume and defect annealing of copper after high-pressure torsion[J], Acta Mater., 68, 189, 10.1016/j.actamat.2013.12.036 Frank, 1950, Multiplication processes for slow moving dislocations[J], Phys. Rev., 79, 722, 10.1103/PhysRev.79.722 Mahjoub, 2018, General trends between solute segregation tendency and grain boundary character in aluminum-An ab inito study[J], Acta Mater., 158, 257, 10.1016/j.actamat.2018.07.069 Zhang, 2010, Structure and stability of fe nanocrystals: an atomistic study[J], J. Phys. Chem. C, 114, 18841, 10.1021/jp107709q Wen, 2012, Enhanced thermal stability of Au@ Pt nanoparticles by tuning shell thickness: insights from atomistic simulations[J], J. Mater. Chem., 22, 7380, 10.1039/c2jm16187g Shen, 2013, Size dependence and phase transition during melting of fcc-Fe nanoparticles: a molecular dynamics simulation[J], Appl. Surf. Sci., 277, 7, 10.1016/j.apsusc.2013.03.017 Cohen, 1966, Melting of copper, silver, and gold at high pressures[J], Phys. Rev., 145, 519, 10.1103/PhysRev.145.519