Tác động của việc làm ấm đất và bổ sung nước đến quá trình thoát hơi nước của cây phong đường trưởng thành

Springer Science and Business Media LLC - Tập 21 - Trang 98-111 - 2017
Alex R. Collins1, Andrew J. Burton1, Molly A. Cavaleri1
1School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, USA

Tóm tắt

Cây phong đường (Acer saccharum), một loài cây gỗ và cây lấy siro có giá trị kinh tế, được dự đoán sẽ không phát triển tốt dưới những điều kiện khí hậu tương lai được mong đợi. Mục tiêu của nghiên cứu của chúng tôi là (1) phân tích tác động của việc ấm lên và sự sẵn có của độ ẩm đất đến tỷ lệ thoát hơi nước của các cây phong đường trưởng thành thông qua một thí nghiệm làm ấm đất đầy đủ yếu tố × bổ sung nước và (2) xác định yếu tố môi trường chính tác động đến quá trình thoát hơi nước của cây phong đường ở khu vực Tây Bắc Trung Mỹ. Trong suốt ba mùa sinh trưởng, chúng tôi đã theo dõi dòng nhựa của 33 cây trong tám ô thí nghiệm rộng 100 m2, với hai lần lặp lại cho bốn điều trị: (1) nhiệt (đất được làm ấm +4°C), (2) nước (1.3 × lượng mưa bình quân trong mùa sinh trưởng), (3) nhiệt + nước, và (4) kiểm soát. Như dự đoán, quá trình thoát hơi nước của cây phong đường đã giảm dưới các điều trị nhiệt trong tất cả các năm và tăng lên trong các điều trị nước trong năm thứ nhất và thứ hai, tất cả đều phụ thuộc chủ yếu vào độ ẩm của đất. Tuy nhiên, trong điều trị nhiệt + nước, việc bổ sung nước chỉ bù đắp cho sự bốc hơi nước của đất do ấm lên vào năm thứ nhất (2011), đó là năm khô hạn nhất. Mặc dù có bằng chứng rõ ràng về tác động của điều trị do độ ẩm đất, ánh sáng là yếu tố chính điều khiển sự biến thiên theo mùa của dòng nhựa trong hệ sinh thái tập trung nhiều cây phong đường này có mùa sinh trưởng tương đối ngắn. Tuy nhiên, dòng nhựa bị giảm khi độ ẩm của đất giảm, và do đó, khả năng thu C ròng có thể cũng giảm. Nhìn chung, kết quả của chúng tôi cho thấy rằng mặc dù loài cây ôn đới phía bắc này chủ yếu bị giới hạn bởi ánh sáng, năng suất của cây phong đường có thể giảm do khí hậu ấm lên tại những khu vực khô hạn trong phạm vi hiện tại, nếu sự ấm lên không đi kèm với sự gia tăng đủ về lượng mưa.

Từ khóa

#cây phong đường #thoát hơi nước #độ ẩm đất #khí hậu ấm lên #năng suất sinh học

Tài liệu tham khảo

Auclair AND, Heilman WE, Brinkman B. 2010. Predicting forest dieback in Maine, USA: a simple model based on soil frost and drought. Can J For Res/Rev Can Rech For 40:687–702. Bailey SW, Horsley SB, Long RP, Hallett RA. 2004. Influence of edaphic factors on sugar maple nutrition and health on the Allegheny Plateau. Soil Sci Soc Am J 68:243–52. Bal T, Storer A, Jurgensen M, Doskey P, Amacher M. 2015. Nutrient stress predisposes and contributes to sugar maple dieback across its northern range: a review. Forestry 88:64–83. Betsch P, Bonal D, Breda N, Montpied P, Peiffer M, Tuzet A, Granier A. 2011. Drought effects on water relations in beech: the contribution of exchangeable water reservoirs. Agric For Meteorol 151:531–43. Bishop D, Beier C, Pederson N, Lawrence G, Stella J. 2015. Regional growth decline of sugar maple (Acer saccharum) and its potential causes. Ecosphere 6(10):179. Bovard BD, Curtis PS, Vogel CS, Su HB, Schmid HP. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiol 25:31–8. Burton A, Jarvey J, Jarvi M, Zak D, Pregitzer K. 2012. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests. Glob Change Biol 18:258–66. Chen L, Zhang Z, Zha T, Mo K, Zhang Y. 2014. Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation. New For 45:235–50. Chevan A, Sutherland M. 1991. Hierarchical partitioning. Am Stat 45:90–6. Coble A, Cavaleri M. 2014. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest. Tree Physiol 34:146–58. Coble A, Cavaleri M. 2015. Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment. Oecologia 177:1131–43. Copolovici L, Niinemets U. 2010. Flooding induced emissions of volatile signalling compounds in three tree species with differing waterlogging tolerance. Plant Cell Environ 33:1582–94. Dermody O, Weltzin J, Engel E, Allen P, Norby R. 2007. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant Soil 301:255–66. Ellsworth DS, Reich PB. 1992. Water relations and gas-exchange of acer-saccharum seedlings in contrasting natural light and water regimes. Tree Physiol 10:1–20. Ewers BE, Mackay DS, Tang J, Bolstad PV, Samanta S. 2008. Intercomparison of sugar maple (Acer saccharum Marsh.) stand transpiration responses to environmental conditions from the Western Great Lakes Region of the United States. Agric For Meteorol 148:231–46. Farrell M, Stedman R. 2013. Landowner attitudes toward maple syrup production in the northern forest: a survey of forest owners with ≥ 100 Acres in Maine, New Hampshire, New York, and Vermont. North J Appl For 30:184–7. Filewod B, Thomas S. 2014. Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Glob Change Biol 20:360–71. Frey BR, Lieffers VJ, Hogg EH, Landhausser SM. 2004. Predicting landscape patterns of aspen dieback: mechanisms and knowledge gaps. Can J For Res/Rev Can Rech For 34:1379–90. Gao Q, Zhao P, Zeng X, Cai X, Shen W. 2002. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell Environ 25:1373–81. Gebauer T, Horna V, Leuschner C. 2008. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree Physiol 28:1821–30. Godman RM, Yawney HW, Tubbs CH. 1990. Sugar Maple (Acer saccharum Marsh.). In: Burns RM, Honkala BH, Eds. Silvics of North America: 2. Hardwoods, Agriculture Handbook 654. Washington, DC: F. S. U.S. Dept. Agric. pp. 78–91. Goldblum D, Rigg LS. 2005. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada. Can J For Res/Rev Can Rech For 35:2709–18. Granier A. 1985. A new method of sap flow measurement in tree stems. Ann Sci For 42:193–200. Granier A. 1987. Evaluation of transpiration in a douglas-fir stand by means of sap flow measurements. Tree Physiol 3:309–19. Gunderson CA, Norby RJ, Wullschleger SD. 2000. Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiol 20:87–96. Hinckley TM, Dougherty PM, Lassoie JP, Roberts JE, Teskey RO. 1979. A severe drought: Impact on tree growth, phenology, net photosynthetic rate and water relations. Am Midl Nat 102:307–16. Holscher D, Koch O, Korn S, Leuschner C. 2005. Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought. Trees-Struct Funct 19:628–37. Horsley SB, Long RP, Bailey SW, Hallett RA, Wargo PM. 2002. Health of eastern North American sugar maple forests and factors affecting decline. North J Appl For 19:34–44. Houston, DR. 1998. History of sugar maple decline. In: Sugar maple ecology and health: proceedings of an international symposium—GTR-NE-2661. USDA Northeastern Research Station, Warren, Pennsylvania. James SA, Clearwater MJ, Meinzer FC, Goldstein G. 2002. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiol 22:277–83. Jarvi MP 2015. Ecophysiological responses of sugar maple roots to climatic conditions. (Doctoral dissertation). Michigan Technological University, Houghton, MI. Jarvi MP, Burton AJ. 2013. Acclimation and soil moisture constrain sugar maple root respiration in experimentally warmed soil. Tree Physiol 33:949–59. Kagawa A, Sack L, Duarte KE, James S. 2009. Hawaiian native forest conserves water relative to timber plantation: species and stand traits influence water use. Ecol Appl 19:1429–43. Kratz CJ. 2013. Impacts of climate change on soil microorganisms in northern hardwood forests (doctoral dissertation). Michigan Technological University, Houghton, MI. Kuster T, Arend M, Guenthardt Goerg M, Schulin R. 2013. Root growth of different oak provenances in two soils under drought stress and air warming conditions. Plant Soil 369:61–71. Lu P, Urban L, Zhao P. 2004. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot Sin 46:631–46. McCulloh K, Winter K, Meinzer F, Garcia M, Aranda J, Lachenbruch B. 2007. A comparison of daily water use estimates derived from constant-heat sap-flow probe values and gravimetric measurements in pot-grown saplings. Tree Physiol 27:1355–60. McDowell N. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–9. McLaughlin S, Percy K. 1999. Forest health in North America: some perspectives on actual and potential roles of climate and air pollution. Water Air Soil Pollut 116:151–97. Meinzer F, Woodruff D, Eissenstat D, Lin H, Adams T, McCulloh K. 2013. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest. Tree Physiol 33:345–56. Melillo J, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhou Y-M, Tang J. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–12. Millers I, Shriner DD, Rizzo D. 1989. History of hardwood decline in the Eastern United States- NE-126. USDA Northeastern Experiment Station. Moore G, Bond B, Jones J, Meinzer F. 2010. Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years. Trees 24:165–74. Morrison JA, Mauck K. 2007. Experimental field comparison of native and non-native maple seedlings: natural enemies, ecophysiology, growth and survival. J Ecol 95:1036–49. Murray K, Conner M. 2009. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90:348–55. Ni BR, Pallardy SG. 1991. Response of gas-exchange to water-exchange to water-stress in seedlings of woody angiosperms. Tree Physiol 8:1–9. Norby RJ, Luo YQ. 2004. Evaluating ecosystem responses to rising atmospheric CO(2) and global warming in a multi-factor world. New Phytol 162:281–93. Oishi AC, Oren R, Stoy P. 2008. Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agric For Meteorol 148:1719–32. Phillips N, Oren R, Zimmermann R. 1996. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell Environ 19:983–90. Prasad AM, Iverson LR, Matthews S, Peters M. 2014. A climate change atlas for 134 forest tree species of the Eastern United States [database]. http://www.nrs.fs.fed.us/atlas/tree, Northern Research Station, USDA Forest Service. Delaware, Ohio. Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP. 2015. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179:641–54. Ruehr N, Gast A, Weber C, Daub B, Arneth A. 2016. Water availability as dominant control of heat stress responses in two contrasting tree species. Tree Physiol 36:164–78. Rustad L. 2008. The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–35. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62. Schmidt-Walter P, Richter F, Herbst M, Schuldt B, Lamersdorf N. 2014. Transpiration and water use strategies of a young and a full-grown short rotation coppice differing in canopy cover and leaf area. Agric For Meteorol 195:165–78. Steppe K, Doody T, Teskey R. 2010. A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agric For Meteorol 150:1046–56. Tang J, Bolstad P, Ewers B, Desai A, Davis K. 2006. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. J Geophys Res 111:1–12. Tschaplinski TJ, Stewart DB, Hanson PJ, Norby RJ. 1995. Interactions between drought and elevated CO2 on growth and gas-exchange of seedlings of 3 deciduous tree species. New Phytol 129:63–71. Usda NASS. 2014. Maple syrup production. Harrisburg, PA: Northeastern Regional Field Office. Watmough SA, McNeely R, Lafleur PM. 2001. Changes in wood and foliar delta C-13 in sugar maple at Gatineau Park, Quebec, Canada. Glob Change Biol 7:955–60. Whitney GG, Upmeyer MM. 2004. Sweet trees, sour circumstances: the long search for sustainability in the North American maple products industry. For Ecol Manag 200:313–33. Wullschleger SD, Hanson PJ. 2006. Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: evidence from a long-term field manipulation study. Glob Change Biol 12:97–109. Zhang Q, Manzoni S, Katul G, Porporato A, Yang D. 2014. The hysteretic evapotranspiration—Vapor pressure deficit relation. J Geophys Res Biogeosci 119:125–40. Zhang SB, Zhou ZK, Hu H, Xu K, Yan N. 2005. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. For Ecol Manag 212:291–301. Zhao JB, Hartmann H, Trumbore S, Ziegler W, Zhang YP. 2013. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol 200:330–9. Zhou Y, Tang J, Melillo J, Butler S, Mohan J. 2011. Root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiol 31:707–17.