Effects of Bed Forms and Large Protruding Grains on Near‐Bed Flow Hydraulics in Low Relative Submergence Conditions

Journal of Geophysical Research F: Earth Surface - Tập 122 Số 10 - Trang 1845-1866 - 2017
Angel Monsalve1,2, Elowyn M. Yager1, M. W. Schmeeckle3
1Civil Engineering, Center for Ecohydraulics Research, University of Idaho, Boise, ID, USA
2Departamento de Ingeniería en Obras Civiles, Universidad de La Frontera, Temuco, Chile
3School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA

Tóm tắt

Abstract

In mountain rivers, bed forms, large relatively immobile grains, and bed texture and topographic variability can significantly alter local and reach‐averaged flow characteristics. The low relative submergence of large immobile grains causes highly three‐dimensional flow fields that may not be represented by traditional shear stress, flow velocity, and turbulence intensity equations. To explore the influence of large protruding grains and bed forms on flow properties, we conducted a set of experiments in which we varied the relative submergence while holding the sediment transport capacity and upstream sediment supply constant. Flow and bed measurements were conducted at the beginning and end of each experiment to account for the absence or presence of bed forms, respectively. Detailed information on the flow was obtained by combining our measurements with a 3‐D numerical model. Commonly used velocity profile equations only performed well at the reach scale when shallow flow effects and the roughness length of the relatively mobile sediment were considered. However, at the local scale large deviations from these profiles were observed and simple methods to estimate the spatial distribution of near‐bed shear stresses are likely to be inaccurate. Zones of high turbulent kinetic energy occurred near the water surface and were largely controlled by the immobile grains and plunging flow. The reach‐averaged shear stress did not correlate to depth or slope, as commonly assumed, but instead was controlled by the relative boulder submergence and degree of plunging flow. For accurate flow predictions in mountain rivers, the effects of bed forms and large boulders must be considered.

Từ khóa


Tài liệu tham khảo

10.2307/1551881

10.1623/hysj.54.1.147

Aghaee Y., 2010, International conference on fluvial hydraulics, river flow 2010, 211

10.1016/j.jhydrol.2015.12.052

10.1061/(ASCE)HY.1943-7900.0000962

10.1061/JYCEAJ.0005114

10.1061/(ASCE)0733-9429(1985)111:4(625)

10.1016/S0022-1694(02)00191-9

10.1111/j.1365-3091.1995.tb00386.x

10.1103/PhysRevE.79.036306

10.1111/j.1365-3091.1992.tb02154.x

10.1002/esp.1111

Blanckaert K., 2010, Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends, Water Resources Research, 46, W09506

Bohorquez P.(2008).Computational continuum mechanics for sediment transport in free‐surface flow. Open Source CFD International Conference (p. 17). Berlin Germany.

10.1139/cjce-2012-0311

Budwig R. S., 2012, Innovations 2012: World innovations in engineering education and research, 17

10.1016/S0169-555X(98)00062-2

10.1029/96WR03190

Bunte K. &Abt S. R.(2001).Sampling surface and subsurface particle‐size distributions in wadable gravel‐ and cobble‐bed streams for analyses in sediment transport hydraulics and Streambed monitoring(General Tech. Rep. RMRS‐GTR‐74). Fort Collins CO: US Department of Agriculture Forest Service Rocky Mountain Research Station.

10.1029/2006WR005727

10.1007/s00348-006-0237-3

10.1016/S0301-9322(96)00063-8

Chanson H., 2004, Drag reduction in skimming flow on stepped spillways by aeration, Journal of Hydraulic Research, 42, 316

10.1063/1.2354434

10.1016/j.geomorph.2013.04.041

10.1111/j.1745-6584.2003.tb02435.x

10.2747/0272-3646.33.1.68

10.1029/2006WR005253

Clifford N. J., 1993, Turbulence: Perspectives on flow and sediment transport, 93

10.1002/esp.3290170202

Cohen J., 2003, Applied multiple regression/correlation analysis for the behavioral sciences

10.1029/2010WR010114

10.1002/wrcr.20464

10.1088/1749-4699/5/1/014016

10.1038/340215a0

Dietrich W. E., 2005, 4th IAHR symposium on river coastal and estuarine morphodynamics RCEM 2005, 79

10.1029/WM012p0001

10.1007/BFb0011181

Esmaeili T., 2009, 3D Numerical simulation of scouring around bridge piers (case study: Bridge 524 crosses the Tanana River), World Academy of Science, Engineering and Technology, 58, 1028

10.1139/f93-136

10.1016/S0169-555X(03)00042-4

10.1029/2006WR005422

Francalanci S., 2005, 4th IAHR symposium on river coastal and estuarine morphodynamics RCEM 2005, 13

Frizell K. W., 2002, 2000 joint conference on water resource engineering and water resources planning and management, 1

10.1029/WR025i006p01161

10.1061/(ASCE)0733-9429(1999)125:3(305)

Grass A. J., 1970, Initial instability of fine sand, Journal of the Hydraulics Division: American Society of Civil Engineers, 96, 619, 10.1061/JYCEAJ.0002369

Griffith J. S., 1999, Inland fisheries management in North America, 405

Grotjans H., 1998, Computational fluid dynamics ‘98, ECCOMAS, 1112

Gupta S. K., 2011, Modern hydrology and sustainable water development

10.1007/s00348-014-1762-0

10.1029/2009WR008926

10.1002/9781119952497.ch33

10.2514/6.1998-2554

10.1016/0021-9991(81)90145-5

10.1002/eco.87

Howell D. C., 2010, Statistical methods for psychology

10.1061/(ASCE)HY.1943-7900.0000734

Jarrett R. D.(1985).Determination of roughness coefficients for streams in Colorado. U.S. Geological Survey Water‐resources investigations report 85–4004 Lakewood CO.

10.1111/j.1752-1688.1990.tb01381.x

10.1002/2016WR018688

10.1029/2011WR011375

Karagiannis N., 2015, 36th IAHR world congress, 3862

Karagiannis N., 2015, 36th IAHR world congress, 141

10.1029/2001WR000817

Kellerhals R., 1971, Sampling procedures for coarse fluvial sediments, Journal of Hydraulics Division, ASCE, 97, 1165, 10.1061/JYCEAJ.0003044

10.1002/esp.3550

10.1016/j.advwatres.2013.01.008

10.1016/j.advwatres.2014.09.007

10.1061/(ASCE)0733-9429(2007)133:10(1123)

Kilpatrick F. A., 1989, Techniques of water‐resources investigations of the United States geological survey—applications of hydraulics, 1

Kinerson D.(1990).Surface response to sediment supply (M.Sc. Thesis 108 pp.).Berkeley CA:University of California.

10.1680/iwtme.1994.27234

10.1016/j.geomorph.2008.05.045

10.1029/2007JF000831

10.1002/esp.195

10.1002/9780470747148

10.1002/esp.239

10.1002/hyp.6168

Lepp L. R., 1993, Channel erosion in steep gradient, gravel‐paved streams, Bulletin of the Association of Engineering Geologists, 30, 443

10.1029/93WR01673

10.1029/2000WR900238

10.1061/(ASCE)0733-950X(2008)134:4(203)

10.1061/40655(2002)57

10.1007/s10525-005-0125-z

10.1029/2001WR001238

MacMurray H. L.(1985).The use of the salt‐velocity method for the precise measurement of resistance to flow in rough‐boundary open channels (Ph.D. Thesis). Christchurch New Zealand: Department of Environmental Management University of Canterbury.

10.1029/2003JF000018

10.1029/2003JF000017

10.1016/j.geomorph.2008.07.017

10.2307/3673667

10.1029/2005WR004708

10.1061/(ASCE)0733-9429(1986)112:4(300)

10.1029/1999JC900116

10.2514/3.12149

Menter F. R., 2001, 16th Brazilian congress of mechanical engineering, 117

Menter F. R., 2003, International gas turbine congress 2003, 1

10.1002/2015WR017694

Morgan G. C. J.(2013).Application of the interFoam VOF code to coastal wave/structure interaction (Ph.D. Thesis). Bath UK: Department of Architecture and Civil Engineering University of Bath.

10.1029/2010JF001747

Nelson J. M. &McDonald R. R.(1995).Mechanics and modeling of flow and bed evolution in lateral separation eddies.Flagstaff AZ:US Geological Survey Glen Canyon Environmental Studies Report.

10.1029/93WR01932

10.1016/j.advwatres.2015.09.017

10.1029/2008JF001144

10.1029/1998WR900069

10.1029/2000JC900145

Nezu L., 1993, Turbulence in open channel flows, IAHR Monographs

10.1061/(ASCE)0733-9429(2000)126:9(679)

10.1061/(ASCE)0733-9429(2001)127:2(123)

10.1029/2012WR012091

10.1029/2011WR010645

10.1061/(ASCE)0733-9429(2003)129:5(366)

10.1002/rra.2664

10.1016/j.ijheatfluidflow.2011.08.003

10.1061/(ASCE)0733-9429(2006)132:6(545)

10.1016/j.jfluidstructs.2008.07.002

10.1080/00221686.2004.9728402

10.1061/(ASCE)0733-9399(2001)127:3(211)

10.1061/(ASCE)0733-9429(2002)128:4(369)

Papanicolaou A. N., 2005, 4th IAHR symposium on river coastal and estuarine morphodynamics RCEM 2005, 1083

10.1061/41173(414)247

10.2478/s11600-012-0044-6

Papanicolaou A., 2010, International conference on fluvial hydraulics, river flow 2010, 793

10.1080/00221689009499058

10.1061/JYCEAJ.0005854

10.1016/j.flowmeasinst.2013.08.002

10.1061/(ASCE)0733-9429(1994)120:10(1176)

10.1139/cjce-2013-0160

10.1029/2008WR006826

10.1016/j.geomorph.2012.07.005

10.1029/2010WR009793

10.1115/1.3242559

Rodriguez P.(2008).Study and numerical simulation of sediment transport in free‐surface Flow (Ph.D. Thesis). Malaga Spain: Department of Mechanical Engineering and Fluid Mechanics University of Malaga.

10.1002/2013JF002911

10.1046/j.1365-3091.2003.00555.x

10.1002/2014JF003302

10.1080/00221680109499840

10.1002/pamm.201210254

10.1016/j.ecoleng.2012.04.015

10.1577/T04-069.1

10.1029/JC082i012p01735

10.1080/00221686.2014.944227

Stoesser T. vonTerzi D. Rodi W. &Olsen N. R. B.(2006).RANS simulation and LES of Flow over dunes at low relative submergence ratios. Paper presented at 7th International Conference on Hydroscience and Engineering Drexel University Philadelphia.

Straub L. G., 1954, Velocity measurement of air‐water mixtures, Transactions of the American Society of Civil Engineers, 119, 207, 10.1061/TACEAT.0007098

10.1061/TACEAT.0007393

10.1061/(ASCE)0733-9429(2007)133:12(1379)

10.1201/b16998-42

10.1002/esp.1330

Sutcliffe A. G.(2014).Modelling the effects of aquatic plant growth and management on the hydraulics of a chalk stream (Ph.D. thesis 363 pp.). London England: Queen Mary University of London.

10.1016/j.geomorph.2006.05.001

10.1111/j.1749-8198.2009.00226.x

10.1002/9781118526576.ch3

10.1061/(ASCE)0733-9429(2005)131:8(635)

10.1007/s11629-014-3055-8

10.1061/(ASCE)HY.1943-7900.0001198

10.1016/j.geomorph.2005.09.024

10.1029/2000JC900094

10.1029/2006WR004919

10.1061/(ASCE)0733-9429(2004)130:11(1119)

10.1061/(ASCE)0733-9429(1984)110:4(423)

Weller H. G.(2005).Derivation modelling and solution of the conditionally averaged two‐phase flow equations(Tech. Rep.).London England:OpenCFD Ltd.

10.1063/1.168744

10.1017/S0022112007008415

Whittaker J. G., 1986, 9th Australasian Fluid Mechanics Conference, 358

10.1029/90WR02770

10.1061/(ASCE)0733-9429(2003)129:2(120)

10.1029/2005WR004278

10.1016/j.geomorph.2006.02.017

10.1061/(ASCE)0733-9429(2003)129:10(758)

10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5

10.1061/(ASCE)0733-9429(2000)126:1(4)

10.1061/(ASCE)0733-9429(2004)130:12(1187)

10.1029/2011WR010829

10.1029/2006WR005432

10.1002/jgrf.20085

10.1061/(ASCE)0733-9429(1998)124:7(687)

10.1016/0021-9991(79)90051-2

Zanke U. C. E., 2003, On the influence of turbulence on the initiation of sediment motion, International Journal of Sediment Research, 18, 17

Zeng J., 2005, 31st international association hydraulic research congress, 554

10.3826/jhr.2008.3328

10.1134/S0869864313040082

10.1029/2009WR007913

10.1029/2010WR009516