Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của tỷ lệ dòng axetilen đến cấu trúc, tính chất cơ học và tính chất ma sát của lớp phủ Cr-CHx được lắng đọng bằng phương pháp phun magnetron tần số vô tuyến
Tóm tắt
Lớp phủ Cr-CHx (trong đó x biểu thị tốc độ dòng axetilen và có giá trị trong khoảng từ 5 đến 35 sccm) đã được lắng đọng trên các nền thép tốc độ cao bằng hệ thống phun magnetron tần số vô tuyến. Các pha tinh thể của lớp phủ đã được xác định bằng phương pháp nhiễu xạ tia X. Đặc điểm hình thái bề mặt và cấu trúc vi mô cắt ngang đã được phân tích bằng kính hiển vi quét điện tử. Kết quả XRD cho thấy rằng các lớp phủ chủ yếu bao gồm các pha tinh thể Cr7C3 và Cr kim loại. Ngoài ra, kết quả phân tích phổ Raman cho thấy rằng các lớp phủ Cr-CH25 và Cr-CH35 có tỷ lệ ID–IG lần lượt là 1.08 và 1.22. Độ cứng của lớp phủ giảm dần khi tốc độ dòng axetilen tăng. Ngược lại, cường độ bám dính tăng khi tốc độ dòng vượt quá 15 sccm. Trong số tất cả các lớp phủ, lớp phủ Cr-CH35 thể hiện các tính chất ma sát tốt nhất, với hệ số ma sát trung bình là 0.048 và tỷ lệ mòn là 0.28×10−6 mm3/Nm dưới tải trọng 8 N.
Từ khóa
#Cr-CHx lớp phủ #phun magnetron tần số vô tuyến #tính chất ma sát #độ cứng lớp phủ #tỷ lệ dòng axetilen #phân tích phổ RamanTài liệu tham khảo
B. Kursuncu, Influence of Cryogenic Heat-Treatment Soaking Period and Temperature on Performance of Sintered Carbide Cutting Tools in Milling of Inconel 718, Int. J. Refractory Metals Hard Mater., 2020, 92, p 105323.
F. Careri, D. Umbrello, K. Essa, M.M. Attallah and S. Imbrogno, The Effect of the Heat Treatments on the tool Wear of Hybrid Additive Manufacturing of IN718, Wear, 2021, 470–471, p 203617.
N.A. Özbek, Effects of Cryogenic Treatment Types on the Performance of Coated Tungsten Tools in the Turning of AISI H11 Steel, J. Mater. Res. Technol., 2020, 9, p 9442–9456.
H. Ziegele, C. Rebholz, A.A. Voevodin, A. Leyland, S.L. Rohde and A. Matthews, Studies of the Tribological and Mechanical Properties of Laminated CrC–SiC Coatings Produced by r.f. and d.c. Sputtering Tribology, International., 1997, 30, p 845–856.
S. Sen, Influence of Chromium Carbide Coating on Tribological Performance of Steel, Mater. Des., 2006, 27, p 85–91.
L. Yate, L. Martínez-de-Olcoz, V.I. Ivashchenko, A.V. Pshyk, E. Coy and J. Esteve, Stabilization of Complex Orthorhombic o-Cr3C2 Thin Films under High Energetic Growth Conditions: Experiments and Calculations, J. Alloys Compd., 2020, 848, p 156373.
M. Detroye, F. Reniers, C. Buess-Herman and J. Vereecken, Synthesis and Characterisation of Chromium Carbides, Appl. Surf. Sci., 1997, 120, p 85–93.
C. Ziebert, J. Ye, M. Stüber, S. Ulrich, M. Edinger and I. Barzen, Ion Bombardment-induced Nanocrystallization of Magnetron-sputtered Chromium Carbide Thin Films, Surf. Coat. Technol., 2011, 205, p 4844–4849.
B. Xiao, J.D. Xing, J. Feng, Y.F. Li, C.T. Zhou, W. Su, X.J. Xie and Y.H. Chen, Theoretical Study on the Stability and Mechanical Property of Cr7C3, Phys. B, 2008, 403, p 2273–2281.
W.H. Kao, Y.L. Su and S.H. Yao, Tribological Property and Drilling Application of Ti–C: H and Cr–C: H Coatings on High-speed Steel Substrates, Vacuum, 2006, 80, p 604–614.
G.M. Bakić, V. Maksimović, A. Maslarević, M.B. Djukić, B. Rajičić, A. Djordjević, Microstructural Characterization Of WC And CrC Based Coatings Applied By Different Processes. Metallurgical & Materials Engineering Congress of South-East Europe. 2015
Y.L. Su, T.H. Liu, C.T. Su and T.P. Cho, Effect of Chromium Content on the Dry Machining Performance of Magnetron Sputtered CrxC Coatings, Mater. Sci. Eng., 2004, A346, p 188–197.
C. Pusch, H. Hoche, C. Berger, R. Riedel, E. Ionescu and A. Klein, Influence of the PVD sputtering method on structural characteristics of SiCN-Coatings-Comparison of RF DC and HiPIMS Sputtering and Target Configurations, Surf. Coat. Technol., 2011, 205, p 119–123.
B. Coto, P. Hallander, L. Mendizabal, F. Pagano, H. Kling, R. Ortiz, J. Barriga and L. Selegård, Particle and Rain Erosion Mechanisms on Ti/TiN Multilayer PVD Coatings for Carbon Fibre Reinforced Polymer Substrates Protection, Wear, 2021, 466–467, p 203575.
K.B. Sundaram and J. Alizadeh, Deposition and Optical Studies of Silicon Carbide Nitride Thin Films, Thin Solid Films, 2000, 370, p 151–154.
J.P. Wang, Y.H. Lu and Y.G. Shen, Effect of Nitrogen Content on Phase Configuration, Nanostructure and Mechanical Behaviors in Magnetron Sputtered SiCxNy Thin Films, Appl. Surf. Sci., 2010, 256, p 1955–1960.
S.K. Mishra and A.S. Bhattacharyya, Effect of Substrate Temperature on the Adhesion Properties of Magnetron Sputtered Nano-Composite Si-C-N Hard Thin Films, Mater. Lett., 2008, 62, p 398–402.
A. Baptista, F.J.G. Silvab, J. Porteiro, J.L. Míguez, G. Pinto and L. Fernandes, On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications, Procedia Manufacturing., 2018, 17, p 746–757.
A.O.O.A. Esther, O.P. Oladijo and J.D. Majumdar, Surface Integrity of TiC Thin Film Produced by RF Magnetron Sputtering, Procedia Manufacturing., 2019, 35, p 950–955.
S. Özen and V. Şenay, Optical, Morphological and Nano-mechanical Properties of Chromium Oxide Thin Films Fabricated by Radio Frequency (RF) Magnetron Sputtering, Optik, 2020, 201, p 163433.
N. Akin, B. Kinaci, Y. Ozen and S. Ozcelik, Influence of RF Power on the Opto-electrical and Structural Properties of Gallium-doped Zinc Oxide Thin Films, Mater Electron, 2017, 28, p 7376–7384.
G.M. Wu, A.K. Sahoo and C.Y. Liu, Influence of RF Power on Performance of Sputtered a-IGZO Based Liquid Crystal Cells, Thin Solid Films, 2015, 596, p 56–62.
M. Schwartzkopf, A. Hinz, O. Polonskyi, T. Strunskus, F.C. Löhrer, V. Körstgens, P. Müller-Buschbaum, F. Faupel and S.V. Roth, Role of Sputter Deposition Rate in Tailoring Nanogranular Gold Structures on Polymer Surfaces, Appl. Mater. Interfaces., 2017, 9, p 5629–5637.
P. Souček, J. Daniel, J. Hnilica, K. Bernátová, L. Zábranský, V. Buršíková, M. Stupavská and P. Vašina, Superhard Nanocomposite nc-TiC/a-C: H Coatings: The Effect of HiPIMSon Coating Microstructure and Mechanical Properties, Surf. Coat. Technol., 2017, 311, p 257–267.
B. Wu, G. Lin, Y. Fu, M. Hou and B. Yi, Chromium-containing Carbon Film on Stainless Steel as Bipolar Plates for Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2010, 35, p 3255–3261.
W. Olovsson, B. Alling and M. Magnuson, Structure and Bonding in Amorphous Cr1-xCx Nanocomposite Thin Films: X-ray Absorption Spectra and First-Principles Calculations, J. Phys. Chem. C., 2016, 120, p 12890–12899.
A.G. Kvashnin, A.R. Oganov, A.I. Samtsevich and Z. Allahyari, Computational Search for Novel Hard Chromium-Based Materials, J. Phys. Chem. Lett., 2017, 8, p 755–764.
D. Music, U. Kreissig, R. Mertens and J.M. Schneider, Electronic Structure and Mechanical Properties of Cr7C3, Phys. Lett. A, 2004, 326, p 473–476.
M. Andersson, J. Högström, S. Urbonaite, A. Furlan, L. Nyholm and U. Jansson, Deposition and Characterization of Magnetron Sputtered Amorphous Cr-C Films, Vacuum, 2012, 86, p 1408–1416.
C. Casiraghi, A.C. Ferrari and J. Robertson, Raman Spectroscopy of Hydrogenated Amorphous Carbons, Phys. Rev., 2005, 72, p 085401.
Y. Gao and P. Yin, Determination of Crystallite size of Nanodiamond by Raman Spectroscopy, Diamond Related Mater., 2019, 99, p 107524.
W. Dai, H. Zheng, G. Wu and A. Wang, Effect of Bias Voltage on Growth Property of Cr-DLC Film Prepared by Linear ion Beam Deposition Technique, Vacuum, 2010, 85, p 231–235.
S. Prawer, K.W. Nugent, Y. Lifshitz, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal and R. Kalish, Systematic Variation of the Raman Spectra of DLC Films as a Function of sp2: sp3 Composition, Diam. Relat. Mater., 1996, 5, p 433–438.
A.C. Ferrari and J. Robertson, Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev., 2000, 61, p 14095.
S. Piscanec, F. Mauri, A.C. Ferrari, M. Lazzeri and J. Robertson, Ab Initio Resonant Raman Spectra of Diamond-like Carbons, Diam. Relat. Mater., 2005, 14, p 1078–1083.
B. Ren, Z.X. Liu, L. Shi, B. Cai and M.X. Wang, Structure and Properties of (AlCrMnMoNiZrB0.1)Nx Coatings Prepared by Reactive DC Sputtering, Appl. Surf. Sci., 2011, 257, p 7172–7178.
Y.L. Su, T.H. Liu, C.T. Su and T.P. Cho, Effect of Chromium Content on the dry Machining Performance of Magnetron Sputtered CrxC Coatings, Mater. Sci. Eng., A, 2004, 364, p 188–197.
Y.S. Jhong, C.W. Huang and S.J. Lin, Effects of CH4 Flow Ratio on the Structure and Properties of Reactively Sputtered (CrNbSiTiZr)Cx Coatings, Mater. Chem. Phys., 2018, 210, p 348–352.
I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, US, 2017.
A. Leyland and A. Matthews, On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behavior, Wear, 2000, 245, p 1–11.
J. Guo, H. Wang, F. Meng, X. Liu and F. Huang, Tuning the H/E* Ratio and E* of AlN Coatings by Copper Addition, Surf. Coat. Technol., 2013, 228, p 68–75.
L. Wu, X. Guo and J. Zhang, Abrasive Resistant Coatings—A Review, Lubricants., 2014, 2, p 66–89.
F.-D. Duminica, R. Belchi, L. Libralesso and D. Mercier, Investigation of Cr(N)/DLC Multilayer Coatings Elaborated by PVD for High Wear Resistance and Low Friction Applications, Surf. Coat. Technol., 2018, 337, p 396–403.
L. Huang, J. Yuan, C. Li and D. Hong, Microstructure, Tribological and Cutting Performance of Ti-DLC/α-C: H Multilayer Film on Cemented Carbide, Surf. Coat. Technol., 2018, 353, p 163–170.
S. Neuville and A. Matthews, A Perspective on the Optimisation of Hard Carbon and Related Coatings for Engineering Applications, Thin Solid Films, 2007, 515, p 6619–6653.
W. Tillmann, E. Vogli and F. Hoffmann, Wear-resistant and Low-friction Diamond-Like-Carbon (DLC)-Layers for Industrial Tribological Applications under Humid Conditions, Surf. Coat. Technol., 2009, 204, p 1040–1045.
B. Vengudusamy, J.H. Green, G.D. Lamb and H.A. Spikes, Influence of Hydrogen and Tungsten Concentration on the Tribological Properties of DLC/DLC Contacts with ZDDP, Wear, 2013, 298–299, p 109–119.