Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của đèn LED phát sáng 940 nm lên sự tái sinh của dây thần kinh tọa ở chuột thử nghiệm
Tóm tắt
Mục tiêu của nghiên cứu hiện tại là đánh giá tác động của liệu pháp quang trị liệu bằng đèn LED phát sáng ở bước sóng 940 nm lên sự tái sinh dây thần kinh ở chuột. Bốn mươi con chuột Wistar đực, mỗi con nặng khoảng 300 g, được chia thành bốn nhóm: nhóm đối chứng (C); nhóm đối chứng được điều trị bằng liệu pháp quang trị liệu LED (CLed); nhóm tổn thương dây thần kinh tọa không điều trị bằng liệu pháp quang trị liệu LED (L); nhóm tổn thương dây thần kinh tọa có điều trị bằng liệu pháp quang trị liệu LED (LLed). Tổn thương được gây ra bằng cách nghiền nát dây thần kinh tọa bên phải. Liều lượng 4 J/cm2 được sử dụng trong mười ngày liên tiếp, bắt đầu từ ngày đầu tiên sau phẫu thuật. Nhóm C và L cũng được thực hiện quy trình tương tự như nhóm LLed, nhưng thiết bị được tắt. Liệu pháp quang trị liệu bằng đèn LED với bước sóng 940 nm đã làm giảm diện tích sưng phù, số lượng tế bào đơn nhân có mặt trong sự xâm nhập viêm, và tăng điểm hồi phục chức năng ở 7, 14 và 21 ngày. Kết quả cho thấy việc sử dụng liệu pháp quang trị liệu ở bước sóng 940 nm sau khi bị tổn thương dây thần kinh cải thiện sự hồi phục hình thái và chức năng, cũng như tái sinh dây thần kinh.
Từ khóa
#liệu pháp quang trị liệu #dây thần kinh tọa #tái sinh dây thần kinh #đèn LED #chuột WistarTài liệu tham khảo
Koka R, Hadlock TA (2001) Quantification of functional recovery following rat sciatic nerve transection. Exp Neurol 168:192–195
Groves MJ, Schänzer A, Simpson AJ, An SF, Kuo LT, Scaravilli F (2003) Profile of adult rat sensory neuron loss, apoptosis and replacement after sciatic nerve crush. J Neurocytol 32:113–122
Jacob JM, Croes SA (1998) Acceleration of outgrowth in motor axons from mature and old F344 rats after a conditioning lesion. Exp Neurol 152:231–237
Cragg BG, Thomas PK (1964) The condution velocity of regenerated peripheral nerve fibres. Am J Physiol 171:164–175
Mira JC (1979) Quantitative studies of the regeneration of rat myelinated nerve fibres: variations in the number and size of regenerating fibres after repeated localized freezings. J Anat 129:77–93
De Medinaceli L, Freed WJ, Wyatt RJ (1982) An index of the functional conduction of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol 77:634–643
De Medinaceli L, Derenzo E, Wyatt RJ (1984) Rat sciatic funcional index data management system with digited input. Computational Biomechanics Research 17:185–192
Bain JR, Mackinnon SE, Hunter DA (1989) Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg 83(1):129–138
Dellon AL, Mackinnon SE (1989) Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery 10:220–225
Bridge PM, Ball DJ, Mackinnon SE, Nakao Y, Brandt K, Hunter DA, Hertl C (1994) Nerve crush injuries - A model for axonotmesis. Exp Neurol 127:284–290
Oliveira EF, Mazzer N, Barbieri CH, Selli M (2001) Correlation between functional index and morphometry to evaluate recovery of the rat sciatic nerve following crush injury: experimental study. J Reconstr Microsurg 17(1):69–75
Sanders VM, Jones KJ (2006) Role of immunity in recovery from a peripheral nerve injury. J Neuroimmune Pharmacol 1:9–11
Boivin A, Pineau I, Barrette B, Filali M, Valliéres N, Rivest S, Lacroix S (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 125:65–76
Ruohonen S, Khademi M, Jagodic M, Taskinen HS, Olsson T, Röyttä M (2005) Cytokine responses during chronic denervation. J Neuroinflammation 2:26
Lu G, Beuerman RW, Zhao S, Sun G, Nguyen DH, Ma S, Kline DG (1997) Tumor necrosis factor-alpha and interleukin-1 induce activation of MAP kinase and SAP kinase in human neuroma fibroblasts. Neurochememistry International 30(4–5):401–410
De Morais NC, Barbosa AM, Vale ML, Villaverde AB, de Lima CJ, Cogo JC, Zamuner SR (2010) Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis. Photomed Laser Surg 28(2):227–232
Belchior ACG, Dos Reis FA, Nicolau RA, Silva IS, Perreira DM, De Carvalho PTC (2009) Influence of laser (660 nm) on functional recovery of the sciatic nerve in rats following crushing lesion. Lasers Med Sci 24:893–899
Rochkind S, Drory V, Alon M, Nissan M, Ouaknine GE (2007) Laser phototherapy (780 nm), a new modality in treatment of long-term incomplete peripheral nerve injury: a randomized double-blind placebo-controlled study. Photomed Laser Surg 25(5):436–442
Rochkind S (2009) Phototherapy in peripheral nerve regeneration: from basic science to clinical study. Neurosurg Focus 26:2
Ozen T, Orhan K, Gorur I, Ozturk A (2006) Efficacy of low level laser therapy on neurosensory recovery after injury to the inferior alveolar nerve. Head Face Med 15:2–3
Vinck E, Cagnie B, Cornelissen M, Declercq H, Cambier D (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23(2):167–171
Marques CRS, Martin AA, Lima CJ, Conrado LAL, Silveira FL, Carvalho MV (2004) The use of hyperbaric oxygen therapy and LEDtherapy in diabetic foot. Lasers Surg Med 5312:47–53
Gigo-Benato D, Geuna S, Rochkind S (2005) Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31:694–701
Dall Agnol MA, Nicolau RA, de Lima CJ, Munin E (2009) Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 24:909–916
Andraus RAC, Barbieri CH, Mazzer N (2010) A irradiação local com o laser de baixa potência acelera a regeneração do nervo fibular de ratos. Acta Ortop Bras 18:3
Van Breugel HH, Bar PR (1993) HE-NE laser irradiation affects proliferation of culture rat Schwann cells in a dose–dependent manner. J Neurocytol 22(3):185–190
Mohammed IF, Al-Mustawfi N, Kaka LN (2007) Promotion of regenerative processes in injured peripheral nerve induced by low-level laser therapy. Photomed Laser Surg 25(2):107–111
Barbosa RI, Marcolino AM, de Jesus Guirro RR, Mazzer N, Barbieri CH, de Cássia Registro Fonseca M (2010) Comparative effects of wavelengths of low-power laser in regeneration of sciatic nerve in rats following crushing lesion. Lasers Med Sci 25(3):423–430
Xavier M, David DR, de Souza RA, Arrieiro AN, Miranda H, Santana ET, Silva JA Jr, Salgado MA, Aimbire F, Albertini R (2010) Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats. Lasers Surg Med 42(6):553–558
Vinck R, Nimmo AJ (2002) Novel therapies in development for the treatment of traumatic brain injury. Expert Opin Investig Drugs 11(10):1375–1386
Lim JH, Lee J, Choi J, Hong J, Jhun H, Han J, Kim S (2009) The effects of light-emitting diode irradiation at 610 nm and 710 nm on murine T-cell subset populations. Photomed Laser Surg 27(5):813–818
Benedicenti S, Pepe IM, Angiero F, Benedicenti A (2008) Intracellular ATP level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453
Correa F, Lopes Martins RA, Correa JC, Iversen VV, Joenson J, Bjordal JM (2007) Low-level laser therapy (GaAs lambda = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg 25(4):245–249
Rizzi CF, Mauriz JL, Freitas Corrêa DS, Moreira AJ, Zettler CG, Filippin LI, Marroni NP, González-Gallego J (2006) Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle. Lasers Surg Med 38(7):704–713
Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med 37(4):293–300
Silveira PC, Streck EL, Pinho RA (2007) Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J Photochem Photobiol B 86(3):279–282
Perrin FE, Lacroix S, Avilés-Trigueros M, David S (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain 128(Pt 4):854–866
Narciso MS, Mietto Bde S, Marques SA, Soares CP, Mermelstein Cdos S, El-Cheikh MC, Martinez AM (2009) Sciatic nerve regeneration is accelerated in galectin-3 knockout mice. Exp Neurol 217:7–15
Belchior ACG, Dos Reis FA, Nicolau RA, Silva IS, Perreira DM, De Carvalho PTC (2008) Effect of gallium-aluminum-arsenide laser therapy (660 Nm) on recovery of the sciatic nerve in rats following neurotmesis lesion and epineural anastomosis: functional analysis. Rev Bras Fis 12(3):215–221
Eells JT, Henry MM, Summerfelt P, Wong-Riley MTT, Buchmann EV, Kane M, Whelan NT, Whelan HT (2003) Therapeutic photobiomodulation for methanol-induced retinal toxicity. Natl Acad Sci 100(6):3439–3444
Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23(4):335
Wollman Y, Rochkind S, Simantov R (1996) Low power laser irradiation enhances migration and neurite sprouting of cultured rat embryonal brain cells. Neurol Res 18(5):467–470
Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84–91
Shin DH, Lee E, Hyun JK, Lee SJ, Chang PY, Kim JW, Choid YS, Bum SK (2003) Growth-associated protein-43 is elevated in the injured rat sciatic nerve after low power laser irradiation. Neurosci Lett 344:71–74
Sousa LR, Cavalcanti BN, Marques MM (2009) Effect of laser phototherapy on the release of TNF-alpha and MMP-1 by endodontic sealer-stimulated macrophages. Photomed Laser Surg 27(1):37–42
Gavish L, Perez LS, Reissman P, Gertz SD (2008) Irradiation with 780 nm diode laser attenuates inflammatory cytokines but upregulates nitric oxide in lipopolysaccharide-stimulated macrophages: implications for the prevention of aneurysm progression. Lasers Surg Med 40(5):371–378
Novoselova EG, Glushkova OV, Cherenkov DA, Chudnovsky VM, Fesenko EE (2006) Effects of low-power laser radiation on mice immunity. Photodermatol Photoimmunol Photomed 22(1):33–38
Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185