Effects of 0.1 wt.% Manganese, Aluminum, and Silicon on Oxidation and Copper-rich Liquid Phase Formation in an Iron–0.3 wt.% Copper–0.15 Wt.% Nickel Alloy
Tóm tắt
This study investigated the effect of easily oxidizable impurities on the oxidation behavior of iron containing small amounts of copper and nickel. The motivation for this work stems from a cracking phenomenon in low carbon steels known as hot shortness. This type of cracking is caused by formation of a copper-rich liquid layer and is reduced in the presence of easily oxidizable impurities. This work studied iron alloys with 0.3 wt.% copper, 0.15 wt.% nickel, and 0.1 wt.% (manganese, aluminum, or silicon) oxidized in air at 1,150 °C. Parabolic oxidation rates were not affected by manganese or aluminum but were decreased with silicon additions. Manganese and aluminum additions led to internal MnO and hercynite formation. These slightly increased the amount of material entrapped into the oxide. Silicon additions led to a nearly continuous fayalite layer near the oxide/metal interface that decreased the oxidation rate and therefore the amount of copper-rich liquid.
Tài liệu tham khảo
Energetics Inc., United States Department of Energy Report Number DOE/EE-0229, 10 (2000).
J. A. T. Jones, B. Bowman, and P. A. Lefrank, in The Making, Shaping, and Treating of Steel—Steelmaking and Refining Volume, ed. R. J. Fruehan (The AISE Steel Foundation, Pittsburgh, PA, USA, 1998), p. 525.
J. K. S. Tee and D. J. Fray, Ironmaking and Steelmaking 33, 19 (2006).
T. B. Massalski (ed.), Fe-Cu—Binary Alloy Phase Diagrams CD (ASM International, Metals Park, OH, 1996).
D. A. Melford, Philosophical Transactions of the Royal Society of London A295, 89 (1980).
N. Imai, N. Komatsubara, and K. Kunishige, ISIJ International 37, 217 (1997).
W. J. M. Salter, Journal of the Iron and Steel Institute 204, 478 (1966).
A. Nicholson and J. D. Murray, Journal of the Iron and Steel Institute 203, 1007 (1965).
D. A. Melford, Journal of the Iron and Steel Institute 200, 290 (1962).
G. G. Foster and J. K. Gilchrist, Metallurgia 225, 225 (1952).
G. L. Fisher, Journal of the Iron and Steel Institute 207, 1010 (1969).
T. Fukagawa and H. Fujikawa, Oxidation of Metals 52, 177 (1999).
R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 63, 145 (2005).
R. Y. Chen and W. Y. D. Yuen, ISIJ International 45, 807 (2005).
B. A. Webler, L. Yin, and S. Sridhar, Metallurgical and Materials Transactions B (2008, Accepted).
B. A. Webler and S. Sridhar, ISIJ International 47, 1245 (2007).
L. Habraken and J. Lecomte-Beckers, in Copper in Iron and Steel, eds. I. Le May and L. McDonald Schetky (John Wiley & Sons, New York, NY, USA, 1982), p. 45.
A. R. Cox and J. M. Winn, Journal of the Iron and Steel Institute 203, 175 (1965).
M. Nagumo and Y. Hida, ATB Metallurgie 23, 10.1 (1983).
M. I. Copeland and J. E. Kelley, Report of Investigations—US Bureau of Mines, # 7682, 1 (1972).
M. I. Copeland, Report of Investigations—US Bureau of Mines, # 7936, 1 (1974).
D. H. Hubble and R. J. Fruehan (eds.), The Making, Shaping and Treating of Steel (The AISE Steel Foundation, Pittsburgh, PA, USA, 1998), p. 200.
H. Abuluwefa, R. I. L. Guthrie, and F. Ajersch, Oxidation of Metals 46, 423 (1996).
ImageJ, Available at: http://rsb.info.nih.gov/ij/.
K. Schwerdtfeger and S. Zhou, Steel Research 74, 538 (2003).
V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1962), p. 81.
R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).
S. Akamatsu, T. Senuma, Y. Takada, and M. Hasebe, Materials Science and Technology 15, 1301 (1999).
I. A. Menzies and W. J. Tomlinson, Journal of the Iron and Steel Institute 204, 1239 (1966).
J. P. Neumann, T. Zhong, and Y. A. Chang, Bulletin of Alloy Phase Diagrams 5, 136 (1984).
J. P. Neumann, T. Zhong, and Y. A. Chang, Bulletin of Alloy Phase Diagrams 5, 141 (1984).
A. Brückman, Corrosion Science 7, 51 (1967).
P. Kofstad, Oxidation of Metals 24, 265 (1985).
R. Dieckmann, Ceramic Transactions 71, 33 (1996).
P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Robert E. Krieger Publishing Company, Malabar, Florida, 1983), p. 229.
J. W. Evans and S. K. Chatterji, Journal of the Electrochemical Society 106, 860–866 (1959).
C. W. Tuck, Corrosion Science 5, 631 (1965).
C. W. Tuck (ed.), First International Congress on Metallic Corrosion (Butterworths, London, 1961), p. 221.
J. Païdassi, Acta Metallurgica 6, 184 (1958).
G. Garnaud and R. A. Rapp, Oxidation of Metals 11, 193 (1977).
L. Himmel, R. F. Mehl, and C. E. Birchenall, Transactions of the AIME 197, 827 (1953).
V. Lanteri, D. Huin, P. Drillet, D. Bouleau, P. Henry, and H. Gaye, in Microscopy of Oxidation, eds. S. B. Newcomb and J. A. Little, Vol. 3 (Institute of Metals, London, England, 1997), p. 535.
J. Takada, K. Kashiwagi, and M. Adachi, Journal of Materials Science 19, 3451 (1984).
F. N. Rhines, W. A. Johnson, and W. A. Anderson, Transactions of the AIME 147, 205 (1942).
F. Maak, Zeitschrift für Metallkunde 52, 545 (1961).
G. Böhm and M. Kahlweit, Acta Metallurgica 12, 641 (1964).
V. Raghavan, in Phase Diagrams of Ternary Iron Alloys, ed. T. Mukerjee (Indian Institute of Metals, Calcutta, India, 1989), p. 181.
J. Takada, S. Yamamoto, S. Kikuchi, and M. Adachi, Metallurgical Transactions A 17A, 221 (1986).
J. H. Swisher and E. T. Turkdogan, Transactions of the Metallurgical Society of the AIME 239, 426 (1967).
I. Meijering, in Advances in Materials Research, ed. H. Herman, Vol. 5 (Wiley-Interscience, New York, 1971).
N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, Cambridge, 2006), p. 108.
D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing (The Minerals, Metals, and Materials Society, Warrendale, Pennsylvania, USA, 1994), p. 434, Fig. 12.11.
W. Batz, H. W. Mead, and C. E. Birchenall, Transactions of the American Institute of Mining and Metallurgical Engineers 194, 1070 (1952).
C. Wagner, Corrosion Science 5, 751 (1965).