Effectiveness of the third body in the direct recombination of ions
Tóm tắt
The dynamics of the three-body recombination of the Cs+ and Br− ions with the formation of products with the lowest internal energy in the presence of the neutral atoms R = Hg, Xe, and Kr as third bodies is studied. The efficiency of the process is characterized by the effectivity function, which represents the dependence of the internal energy of the nascent molecule on the ion encounter energy and the third body energy. The Hg and Xe atoms are demonstrated to exhibit similar efficiencies in stabilizing the CsBr molecules, significantly superior to that of the Kr atom. The effectivity of each third body as an acceptor of excess energy of the molecules formed in recombination is determined by the structure of the potential energy surface of the individual R-Cs+-Br− system, the masses of the third bodies, and the dynamics of three-body collisions leading to recombination.
Tài liệu tham khảo
V. N. Kondrat’ev, Rate Constants of Gas-Phase Reactions (Nauka, Moscow, 1970) [in Russian].
D. L. Baulch, D. D. Drysdale, D. G. Horne, and A. C. Lloyd, Evaluated Kinetic Data for High-Temperature Reactions (Butterworths, London, 1972–1973), Vols. 1, 2.
V. M. Azriel, D. B. Kabanov, L. I. Kolesnikova, and L. Yu. Rusin, Izv. R. Akad. Nauk, Ser. Energet., No. 5, 50 (2007).
V. M. Azriel and L. Yu. Rusin, Russ. J. Phys. Chem. B 2, 499 (2008).
V. M. Azriel, E. V. Kolesnikova, L. Yu. Rusin, and M. B. Sevryuk, J. Phys. Chem. A 115, 7055 (2011).
D. B. Kabanov and L. Yu. Rusin, Chem. Phys. 392, 149 (2012).
E. V. Kolesnikova and L. Yu. Rusin, Russ. J. Phys. Chem. B 6, 583 (2012).
V. M. Azriel, L. Yu. Rusin, and M. B. Sevryuk, Chem. Phys. 411, 26 (2013).
F. Smith, in Kinetic Processes in Gases and Plasma, Ed. by A. R. Hochstim (Academic Press, New York, London, 1969).
A. V. Eletskii, Usp. Fiz. Nauk. 125, 279 (1978).
A. M. Boichenko, V. F. Tarasenko, and S. I. Yakovlenko, Laser Phys. 10, 1159 (2000).
A. M. Boichenko and M. S. Klenovskii, Tech. Phys. 58, 744 (2013).
A. S. Rykov, Search Optimization. Deformed Configurations Methods (Nauka, Moscow, 1993) [in Russian].
E. V. Kolesnikova, L. I. Kolesnikova, and L. Yu. Rusin, Fiz. Khim. Kinet. Gaz. Dinam. 10 (2010). http://chemphys.edu.ru/article/215/.
A. S. Rykov, System Analysis: Models and Methods of Decision Making and Search Optimization (MISiS, Moscow, 2009) [in Russian].
J. A. Nelder and R. Mead, Computer J. 7, 308 (1965).
D. B. Kabanov, E. V. Kolesnikova, and L. Yu. Rusin, Fiz. Khim. Kinet. Gaz. Dinam. 10 (2010). http://chemphys.edu.ru/article/153/.
E. S. Rittner, J. Chem. Phys. 19, 1030 (1951).
P. Brumer and M. Karplus, J. Chem. Phys. 58, 3903 (1973).
V. M. Azriel and L. Yu. Rusin, Fiz. Khim. Kinet. Gaz. Dinam. 4 (2006). http://chemphys.edu.ru/article/36/.
L. V. Lenin and L. Yu. Rusin, Chem. Phys. Lett. 175, 608 (1990).
M. Kumar, A. J. Kaur, and J. Shanker, J. Chem. Phys. 84, 5735 (1986).
S. H. Patil, J. Chem. Phys. 86, 313 (1987).
S. H. Patil, J. Chem. Phys. 89, 6357 (1988).
T. L. Gilbert, O. C. Simpson, and M. A. Williamson, J. Chem. Phys. 63, 4061 (1975).
P. Brumer, Phys. Rev. A 10, 1 (1974).
A. Dalgarno, Adv. Phys. 11, 281 (1962).
I. R. Gatland, M. G. Thackston, W. M. Pope, F. L. Sisele, and E. M. McDaniel, J. Chem. Phys. 68, 2775 (1978).
T. Grycuk and M. Findeisen, J. Phys. B: At. Mol. Opt. Phys. 16, 975 (1983).
C. Bousquet, N. Bras, and Y. Majdi, J. Phys. B: At.Mol. Opt. Phys. 17, 1831 (1984).
A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].