Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles

International Journal of Heat and Mass Transfer - Tập 51 Số 11-12 - Trang 2651-2656 - 2008
Ji-Hwan Lee1, Kyo Sik Hwang1, Seok Pil Jang1, Byeong Ho Lee1, Jun Ho Kim1, Stephen U. S. Choi2,3, Chul Jin Choi4
1School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang, Gyeonggi-do 412 791, Republic of Korea
2Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
3High Efficiency Energy Research Department, Korea Institute of Energy Research, Daejeon 305 343, Republic of Korea
4Digital Appliance Company Research Laboratory, LG Electronics Gaeumjeong-dong, Changwon 641 711, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Maxwell, 1873

S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: D.A. Singer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows, FED 231/MD 66, ASME, New York, 1995, pp. 99–105.

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, 121, 280, 10.1115/1.2825978

Wang, 1999, Thermal conductivity of nanoparticle–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME Trans. J. Heat Transfer, 125, 567, 10.1115/1.1571080

S.M.S. Murshed, K.C. Leong, C. Yang, Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), in: 2006 IEEE Emerging Technologies-Nanoelectronic Conference.

Patel, 2003, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effect, Appl. Phys. Lett., 83, 2931, 10.1063/1.1602578

Müller, 1996

Incropera, 2002

Einstein, 1956

He, 2007, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024

Bentley, 1984, Temperature sensor characteristics and measurement system design, J. Phys. E: Sci. Instrum., 17, 430, 10.1088/0022-3735/17/6/002

Roder, 1981, Transient hot-wire thermal conductivity apparatus for fluids, J. Res. Nat. Bur. Stand., 86, 457, 10.6028/jres.086.020

Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

Jang, 2007, Effects of various parameters on nanofluid thermal conductivity, ASME Trans. J. Heat Transfer, 129, 617, 10.1115/1.2712475