Effective modulating the electronic and magnetic properties of VI3 monolayer: A first-principles calculation
Tài liệu tham khảo
Tan, 2017, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558
Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207
Li, 2017, Low-dimensional half-metallic materials: theoretical simulations and design, WIREs Comput Mol Sci, 7, e1314, 10.1002/wcms.1314
Li, 2016, Two-dimensional monolayer designs for spintronics applications, WIREs Comput Mol Sci, 6, 441, 10.1002/wcms.1259
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35
Şahin, 2009, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations, Phys. Rev. B, 80, 155453, 10.1103/PhysRevB.80.155453
Sharma, 2003, Linear and second-order optical response of III-V monolayer superlattices, Phys. Rev. B, 67, 165332, 10.1103/PhysRevB.67.165332
Zheng, 2015, Monolayer II-VI semiconductors: a first-principles prediction, Phys. Rev. B, 92, 115307, 10.1103/PhysRevB.92.115307
Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279
Xu, 2014, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., 10, 343, 10.1038/nphys2942
Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B, 85, 205302, 10.1103/PhysRevB.85.205302
Guzmán-Verri, 2007, Electronic structure of silicon-based nanostructures, Phys. Rev. B, 76, 10.1103/PhysRevB.76.075131
Vogt, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501
Chen, 2012, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett., 109
Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 10.1088/1367-2630/16/9/095002
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Liu, 2018, Screening magnetic two-dimensional atomic crystals with nontrivial electronic topology, J. Phys. Chem. Lett., 9, 6709, 10.1021/acs.jpclett.8b02783
Liu, 2017, Electronic structures and band alignments of monolayer metal trihalide semiconductors MX3, J. Mater. Chem. C., 5, 9066, 10.1039/C7TC03003G
Sarikurt, 2018, Electronic and magnetic properties of monolayer α-RuCl3: a first-principles and Monte Carlo study, Phys. Chem. Chem. Phys., 20, 997, 10.1039/C7CP07953B
Lin, 2018, Physical realization of 2D spin liquid state by ab initio design and strain engineering in FeX3, J. Phys. Condens. Matter, 30, 325801, 10.1088/1361-648X/aad0d1
Zhang, 2015, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C., 3, 12457, 10.1039/C5TC02840J
Liu, 2016, Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers, Phys. Chem. Chem. Phys., 18, 8777, 10.1039/C5CP04835D
He, 2016, Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers, J. Mater. Chem. C., 4, 2518, 10.1039/C6TC00409A
Bonilla, 2018, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol., 13, 289, 10.1038/s41565-018-0063-9
Huang, 2017, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546, 270, 10.1038/nature22391
Gong, 2017, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, 546, 265, 10.1038/nature22060
Zhang, 2019, Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3, Nano Lett., 19, 3138, 10.1021/acs.nanolett.9b00553
Chen, 2019, Direct observation of van der Waals stacking–dependent interlayer magnetism, Science, 366, 983, 10.1126/science.aav1937
Kong, 2019, VI3—a new layered ferromagnetic semiconductor, Adv. Mater., 31, 1808074, 10.1002/adma.201808074
Tian, 2019, Ferromagnetic van der Waals crystal VI3, J. Am. Chem. Soc., 141, 5326, 10.1021/jacs.8b13584
Fei, 2018, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater., 17, 778, 10.1038/s41563-018-0149-7
Lin, 2019, Defects engineering monolayer MoSe2 magnetic states for 2D spintronic device, J. Alloys Compd., 774, 160, 10.1016/j.jallcom.2018.09.353
Zhou, 2012, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano, 6, 9727, 10.1021/nn303198w
Lv, 2015, Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X = Se, Te) monolayers, Phys. Rev. B, 92, 214419, 10.1103/PhysRevB.92.214419
Jalilian, 2016, Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress, Phys. Met., 83, 372
Akbari, 2018, Tuning the electronic and optical properties of XP (X= Al, Ga) monolayer semiconductors using biaxial strain effect: modified Becke-Johnson calculations, Chem. Phys. Lett., 691, 181, 10.1016/j.cplett.2017.11.021
Wu, 2017, Half-metals and half-semiconductors in a transition metal doped SnSe2 monolayer: a first-principles study, RSC Adv., 7, 44499, 10.1039/C7RA07648G
Kanoun, 2018, Tuning magnetic properties of two-dimensional MoTe2 monolayer by doping 3d transition metals: insights from first principles calculations, J. Alloys Compd., 748, 938, 10.1016/j.jallcom.2018.03.132
Nie, 2019, Electronic structure and magnetic properties of 3d transition-metal atom adsorbed SnO monolayers, Appl. Surf. Sci., 493, 404, 10.1016/j.apsusc.2019.07.054
Ma, 2016, Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study, Appl. Surf. Sci., 371, 180, 10.1016/j.apsusc.2016.02.230
Zhao, 2020, High Curie temperature ferromagnetism in penta-MnN2 monolayer, Appl. Surf. Sci., 505, 144620, 10.1016/j.apsusc.2019.144620
Huang, 2018, Toward intrinsic room-temperature ferromagnetism in two dimensional semiconductors, J. Am. Chem. Soc., 140, 11519, 10.1021/jacs.8b07879
Xue, 2019, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced, Phys. Rev. B, 100, 224429, 10.1103/PhysRevB.100.224429
He, 2019, Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption, J. Mater. Chem. C., 7, 5084, 10.1039/C8TC05530K
Wang, 2018, High curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayer, Nanoscale Horiz, 3, 551, 10.1039/C8NH00101D
Son, 2019, Bulk properties of the van der Waals hard ferromagnet VI3, Phys. Rev. B, 99, 10.1103/PhysRevB.99.041402
Liu, 2020, Critical behavior and magnetocaloric effect in VI3, Phys. Rev. Research, 2
An, 2019, Tuning magnetism in layered magnet VI3: a theoretical study, J. Phys. Chem. C, 123, 30545, 10.1021/acs.jpcc.9b08706
Yang, 2020, Enhancement of ferromagnetism for VI3 monolayer, Appl. Surf. Sci., 524, 146490, 10.1016/j.apsusc.2020.146490
Huang, 2020, Discovery of twin orbital-order phases inferromagnetic semiconducting VI 3 monolayer, Phys. Chem. Chem. Phys., 22, 512, 10.1039/C9CP05643B
Baskurt, 2020, Vanadium dopant- and strain-dependent magnetic properties of single-layer VI3, Appl. Surf. Sci., 508, 144937, 10.1016/j.apsusc.2019.144937
An, 2020, Ferroic orders in two-dimensional transition/rare-earth metal halides, Apl. Mater., 8, 110704, 10.1063/5.0031870
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953
Anisimov, 1991, Band theory and Mott insulators: hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943
Chadi, 1977, Special points for Brillouin-zone integrations, Phys. Rev. B, 16, 1746, 10.1103/PhysRevB.16.1746
Wang, 1993, Torque method for the theoretical determination of magnetocrystalline anisotropy, Phys. Rev. B, 47, 14932, 10.1103/PhysRevB.47.14932
Hu, 2013, Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.097202
Zhang, 2017, Large magnetic anisotropy and strain induced enhancement of magnetic anisotropy in monolayer TaTe2, Phys. Chem. Chem. Phys., 19, 24341, 10.1039/C7CP04445C
Huang, 2018, Effect of Coulomb correlation on the magnetic properties of Mn clusters, J. Phys. Chem., 122, 4350, 10.1021/acs.jpca.8b00540
2012
Kanamori, 1960, Crystal distortion in magnetic compounds, J. Appl. Phys., 31, S14, 10.1063/1.1984590
Goodenough, 1955, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev., 100, 564, 10.1103/PhysRev.100.564
Anderson, 1959, New approach to the theory of superexchange interactions, Phys. Rev., 115, 2, 10.1103/PhysRev.115.2
Bhattacharyya, 2018, Ferromagnetism in magnesium chloride monolayer with an unusually large spin-up gap, Nanoscale, 10, 22280, 10.1039/C8NR07429A
Kan, 2014, Ferromagnetism in MnX2 (X = S, Se) monolayers, Phys. Chem. Chem. Phys., 16, 4990, 10.1039/c3cp55146f
Wang, 2016, Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer, Europhys. Lett., 114, 47001, 10.1209/0295-5075/114/47001
Morshedi, 2018, Theoretical prediction of an antimony-silicon monolayer (penta-Sb2Si): band gap engineering by strain effect, J. Electron. Mater., 47, 2290, 10.1007/s11664-017-6045-0
Naseri, 2017, First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): indirect to direct band gap transition by strain engineering, Chem. Phys. Lett., 685, 310, 10.1016/j.cplett.2017.07.077
Naseri, 2018, Penta-SiC5 monolayer: a novel quasi-planar indirect semiconductor with a tunable wide band gap, Phys. Lett., 382, 210, 10.1016/j.physleta.2018.01.010
Wu, 2019, Strain-tunable magnetic and electronic properties of monolayer CrI3, Phys. Chem. Chem. Phys., 21, 7750, 10.1039/C8CP07067A
Li, 2014, Half-Metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc., 136, 11065, 10.1021/ja505097m
Guan, 2019, First-principles prediction of room-temperature ferromagnetic semiconductor MnS2 via isovalent alloying, J. Phys. Chem. C, 123, 10114, 10.1021/acs.jpcc.9b00763