Effective modulating the electronic and magnetic properties of VI3 monolayer: A first-principles calculation

Hui-min Guo1, Xu-li Wang1, Min Zhang1, Ye-hui Zhang2, Jin Lv1, Hai-shun Wu1
1Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China
2School of Physics, Southeast University, Nanjing 211189, China

Tài liệu tham khảo

Tan, 2017, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117, 6225, 10.1021/acs.chemrev.6b00558 Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207 Li, 2017, Low-dimensional half-metallic materials: theoretical simulations and design, WIREs Comput Mol Sci, 7, e1314, 10.1002/wcms.1314 Li, 2016, Two-dimensional monolayer designs for spintronics applications, WIREs Comput Mol Sci, 6, 441, 10.1002/wcms.1259 Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 Şahin, 2009, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations, Phys. Rev. B, 80, 155453, 10.1103/PhysRevB.80.155453 Sharma, 2003, Linear and second-order optical response of III-V monolayer superlattices, Phys. Rev. B, 67, 165332, 10.1103/PhysRevB.67.165332 Zheng, 2015, Monolayer II-VI semiconductors: a first-principles prediction, Phys. Rev. B, 92, 115307, 10.1103/PhysRevB.92.115307 Radisavljevic, 2011, Single-layer MoS2 transistors, Nat. Nanotechnol., 6, 147, 10.1038/nnano.2010.279 Xu, 2014, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys., 10, 343, 10.1038/nphys2942 Cheiwchanchamnangij, 2012, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Phys. Rev. B, 85, 205302, 10.1103/PhysRevB.85.205302 Guzmán-Verri, 2007, Electronic structure of silicon-based nanostructures, Phys. Rev. B, 76, 10.1103/PhysRevB.76.075131 Vogt, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., 108, 155501, 10.1103/PhysRevLett.108.155501 Chen, 2012, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett., 109 Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys., 16, 10.1088/1367-2630/16/9/095002 Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z Liu, 2018, Screening magnetic two-dimensional atomic crystals with nontrivial electronic topology, J. Phys. Chem. Lett., 9, 6709, 10.1021/acs.jpclett.8b02783 Liu, 2017, Electronic structures and band alignments of monolayer metal trihalide semiconductors MX3, J. Mater. Chem. C., 5, 9066, 10.1039/C7TC03003G Sarikurt, 2018, Electronic and magnetic properties of monolayer α-RuCl3: a first-principles and Monte Carlo study, Phys. Chem. Chem. Phys., 20, 997, 10.1039/C7CP07953B Lin, 2018, Physical realization of 2D spin liquid state by ab initio design and strain engineering in FeX3, J. Phys. Condens. Matter, 30, 325801, 10.1088/1361-648X/aad0d1 Zhang, 2015, Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides, J. Mater. Chem. C., 3, 12457, 10.1039/C5TC02840J Liu, 2016, Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers, Phys. Chem. Chem. Phys., 18, 8777, 10.1039/C5CP04835D He, 2016, Unusual Dirac half-metallicity with intrinsic ferromagnetism in vanadium trihalide monolayers, J. Mater. Chem. C., 4, 2518, 10.1039/C6TC00409A Bonilla, 2018, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol., 13, 289, 10.1038/s41565-018-0063-9 Huang, 2017, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature, 546, 270, 10.1038/nature22391 Gong, 2017, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature, 546, 265, 10.1038/nature22060 Zhang, 2019, Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3, Nano Lett., 19, 3138, 10.1021/acs.nanolett.9b00553 Chen, 2019, Direct observation of van der Waals stacking–dependent interlayer magnetism, Science, 366, 983, 10.1126/science.aav1937 Kong, 2019, VI3—a new layered ferromagnetic semiconductor, Adv. Mater., 31, 1808074, 10.1002/adma.201808074 Tian, 2019, Ferromagnetic van der Waals crystal VI3, J. Am. Chem. Soc., 141, 5326, 10.1021/jacs.8b13584 Fei, 2018, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater., 17, 778, 10.1038/s41563-018-0149-7 Lin, 2019, Defects engineering monolayer MoSe2 magnetic states for 2D spintronic device, J. Alloys Compd., 774, 160, 10.1016/j.jallcom.2018.09.353 Zhou, 2012, Tensile strain switched ferromagnetism in layered NbS2 and NbSe2, ACS Nano, 6, 9727, 10.1021/nn303198w Lv, 2015, Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X = Se, Te) monolayers, Phys. Rev. B, 92, 214419, 10.1103/PhysRevB.92.214419 Jalilian, 2016, Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress, Phys. Met., 83, 372 Akbari, 2018, Tuning the electronic and optical properties of XP (X= Al, Ga) monolayer semiconductors using biaxial strain effect: modified Becke-Johnson calculations, Chem. Phys. Lett., 691, 181, 10.1016/j.cplett.2017.11.021 Wu, 2017, Half-metals and half-semiconductors in a transition metal doped SnSe2 monolayer: a first-principles study, RSC Adv., 7, 44499, 10.1039/C7RA07648G Kanoun, 2018, Tuning magnetic properties of two-dimensional MoTe2 monolayer by doping 3d transition metals: insights from first principles calculations, J. Alloys Compd., 748, 938, 10.1016/j.jallcom.2018.03.132 Nie, 2019, Electronic structure and magnetic properties of 3d transition-metal atom adsorbed SnO monolayers, Appl. Surf. Sci., 493, 404, 10.1016/j.apsusc.2019.07.054 Ma, 2016, Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study, Appl. Surf. Sci., 371, 180, 10.1016/j.apsusc.2016.02.230 Zhao, 2020, High Curie temperature ferromagnetism in penta-MnN2 monolayer, Appl. Surf. Sci., 505, 144620, 10.1016/j.apsusc.2019.144620 Huang, 2018, Toward intrinsic room-temperature ferromagnetism in two dimensional semiconductors, J. Am. Chem. Soc., 140, 11519, 10.1021/jacs.8b07879 Xue, 2019, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced, Phys. Rev. B, 100, 224429, 10.1103/PhysRevB.100.224429 He, 2019, Remarkably enhanced ferromagnetism in a super-exchange governed Cr2Ge2Te6 monolayer via molecular adsorption, J. Mater. Chem. C., 7, 5084, 10.1039/C8TC05530K Wang, 2018, High curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayer, Nanoscale Horiz, 3, 551, 10.1039/C8NH00101D Son, 2019, Bulk properties of the van der Waals hard ferromagnet VI3, Phys. Rev. B, 99, 10.1103/PhysRevB.99.041402 Liu, 2020, Critical behavior and magnetocaloric effect in VI3, Phys. Rev. Research, 2 An, 2019, Tuning magnetism in layered magnet VI3: a theoretical study, J. Phys. Chem. C, 123, 30545, 10.1021/acs.jpcc.9b08706 Yang, 2020, Enhancement of ferromagnetism for VI3 monolayer, Appl. Surf. Sci., 524, 146490, 10.1016/j.apsusc.2020.146490 Huang, 2020, Discovery of twin orbital-order phases inferromagnetic semiconducting VI 3 monolayer, Phys. Chem. Chem. Phys., 22, 512, 10.1039/C9CP05643B Baskurt, 2020, Vanadium dopant- and strain-dependent magnetic properties of single-layer VI3, Appl. Surf. Sci., 508, 144937, 10.1016/j.apsusc.2019.144937 An, 2020, Ferroic orders in two-dimensional transition/rare-earth metal halides, Apl. Mater., 8, 110704, 10.1063/5.0031870 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Blöchl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953 Anisimov, 1991, Band theory and Mott insulators: hubbard U instead of stoner I, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943 Chadi, 1977, Special points for Brillouin-zone integrations, Phys. Rev. B, 16, 1746, 10.1103/PhysRevB.16.1746 Wang, 1993, Torque method for the theoretical determination of magnetocrystalline anisotropy, Phys. Rev. B, 47, 14932, 10.1103/PhysRevB.47.14932 Hu, 2013, Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.097202 Zhang, 2017, Large magnetic anisotropy and strain induced enhancement of magnetic anisotropy in monolayer TaTe2, Phys. Chem. Chem. Phys., 19, 24341, 10.1039/C7CP04445C Huang, 2018, Effect of Coulomb correlation on the magnetic properties of Mn clusters, J. Phys. Chem., 122, 4350, 10.1021/acs.jpca.8b00540 2012 Kanamori, 1960, Crystal distortion in magnetic compounds, J. Appl. Phys., 31, S14, 10.1063/1.1984590 Goodenough, 1955, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3, Phys. Rev., 100, 564, 10.1103/PhysRev.100.564 Anderson, 1959, New approach to the theory of superexchange interactions, Phys. Rev., 115, 2, 10.1103/PhysRev.115.2 Bhattacharyya, 2018, Ferromagnetism in magnesium chloride monolayer with an unusually large spin-up gap, Nanoscale, 10, 22280, 10.1039/C8NR07429A Kan, 2014, Ferromagnetism in MnX2 (X = S, Se) monolayers, Phys. Chem. Chem. Phys., 16, 4990, 10.1039/c3cp55146f Wang, 2016, Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer, Europhys. Lett., 114, 47001, 10.1209/0295-5075/114/47001 Morshedi, 2018, Theoretical prediction of an antimony-silicon monolayer (penta-Sb2Si): band gap engineering by strain effect, J. Electron. Mater., 47, 2290, 10.1007/s11664-017-6045-0 Naseri, 2017, First-principles prediction of a novel cadmium disulfide monolayer (penta-CdS2): indirect to direct band gap transition by strain engineering, Chem. Phys. Lett., 685, 310, 10.1016/j.cplett.2017.07.077 Naseri, 2018, Penta-SiC5 monolayer: a novel quasi-planar indirect semiconductor with a tunable wide band gap, Phys. Lett., 382, 210, 10.1016/j.physleta.2018.01.010 Wu, 2019, Strain-tunable magnetic and electronic properties of monolayer CrI3, Phys. Chem. Chem. Phys., 21, 7750, 10.1039/C8CP07067A Li, 2014, Half-Metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc., 136, 11065, 10.1021/ja505097m Guan, 2019, First-principles prediction of room-temperature ferromagnetic semiconductor MnS2 via isovalent alloying, J. Phys. Chem. C, 123, 10114, 10.1021/acs.jpcc.9b00763