Effective field theory approach to LHC Higgs data

Adam Falkowski1
1Laboratoire de Physique Théorique, Bat. 210, Université Paris-Sud, 91405, Orsay, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

S Weinberg, Phys. Rev. Lett. 19, 1264 (1967)

F Englert and R Brout, Phys. Rev. Lett. 13, 321 (1964)

P W Higgs, Phys. Lett. 12, 132 (1964)

G Guralnik, C Hagen and T Kibble, Phys. Rev. Lett. 13, 585 (1964)

P W Higgs, Phys. Rev. Lett. 13, 508 (1964)

P W Higgs, Phys. Rev. 145, 1156 (1966)

T Kibble, Phys. Rev. 155, 1554 (1967)

ATLAS Collaboration: G Aad, et al, Phys. Lett. B 716, 1 (2012) arXiv: 1207.7214

CMS Collaboration: S Chatrchyan, et al, Phys. Lett. B 716, 30 (2012) arXiv: 1207.7235 [9a] One could consider a more general EFT where assumptions 2 and 3 are also relaxed and the electroweak symmetry is realized non-linearly [10–13]. In that case, the Higgs boson is introduced as a singlet of the local symmetry, rather than as a part of an S U(2) doublet.

B Grinstein and M Trott, Phys. Rev. D 76, 073002 (2007) arXiv: 0704.1505

R Alonso, M Gavela, L Merlo, S Rigolin and J Yepes, Phys. Lett. B 722, 330 (2013) arXiv: 1212.3305

G Isidori, A V Manohar and M Trott, Phys. Lett. B 728, 131 (2014) arXiv: 1305.0663

G Buchalla, O Catà and C Krause, Nucl. Phys. B 880, 552 (2014) arXiv: 1307.5017

W Buchmuller and D Wyler, Nucl. Phys. B 268, 621 (1986) [14a] This assumption is largely practical, because there is little experimental information about Higgs couplings to the first- and second-generation fermions. Currently, these couplings are probed indirectly [15,16], while in the future some may be probed directly via exclusive Higgs decays to a photon and a meson [17,18].

F Goertz, Phys. Rev. Lett. 113(26), 261803 (2014) arXiv: 1406.0102

W Altmannshofer, J Brod and M Schmaltz, arXiv: 1503.04830

G T Bodwin, F Petriello, S Stoynev and M Velasco, Phys. Rev. D 88(5), 053003 (2013) arXiv: 1306.5770

A L Kagan, G Perez, F Petriello, Y Soreq, S Stoynev, et al, Phys. Rev. Lett. 114(10), 101802 (2015) arXiv: 1406.1722 [18a] Throughout this review, the 2-component spinor notation is used for fermions; in all instances the conventions of ref. [19] are followed.

H K Dreiner, H E Haber and S P Martin, Phys. Rept. 494, 1 (2010) arXiv: 0812.1594 [19a] Here and everywhere, repeating Lorentz indices μ,ν,… are implicitly contracted using the Lorentz tensor η μ ν =diag(1,−1,−1,−1). The convention of writing upper and lower Lorentz indices is not adhered to as writing them at the same level does not lead to any ambiguities.

CMS Collaboration: G Aad, et al arXiv: 1503.07589

CDF Collaboration, D0 Collaboration and TEW Group: arXiv: 1204.0042

ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration: S Schael et al, Phys. Rep. 427, 257 (2006), hep-ex/0509008

Particle Data Group Collaboration: J Beringer, et al, Phys. Rev. D 86, 010001 (2012)

H Burkhardt and B Pietrzyk, Phys. Rev. D 84, 037502 (2011) arXiv: 1106.2991

R Alonso, E E Jenkins, A V Manohar and M Trott, J. High Energy Phys. 1404, 159 (2014) arXiv: 1312.2014

LHC Higgs Cross Section Working Group 2 Collaboration: Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001cds.cern.ch/record/2001958

R S Gupta, A Pomarol and F Riva, Phys. Rev. D 91, 3, 035001 (2015) arXiv: 1405.0181

A Pomarol, arXiv: 1412.4410 [28a] Other popular choices in the Higgs-related literature are the Warsaw basis [25,29] and the SILH basis [30,31].

B Grzadkowski, M Iskrzynski, M Misiak and J Rosiek, J. High Energy Phys. 1010, 085 (2010) arXiv: 1008.4884

G Giudice, C Grojean, A Pomarol and R Rattazzi, J. High Energy Phys. 0706, 045 (2007) hep-ph/0703164

R Contino, M Ghezzi, C Grojean, M Muhlleitner and M Spira, J. High Energy Phys. 1307, 035 (2013) arXiv: 1303.3876 1303.3876

A Efrati, A Falkowski and Y Soreq , arXiv: 1503.07872

G Blankenburg, J Ellis and G Isidori, Phys. Lett. B 712, 386 (2012) arXiv: 1202.5704

R Harnik, J Kopp and J Zupan, J. High Energy Phys. 1303, 026 (2013) arXiv: 1209.1397

R Contino, M Ghezzi, M Moretti, G Panico, F Piccinini , et al, J. High Energy Phys. 1208, 154 (2012) arXiv: 1205.5444

M J Dolan, C Englert and M Spannowsky, J. High Energy Phys. 1210, 112 (2012) arXiv: 1206.5001

M McCullough, Phys. Rev. D 90(1), 015001 (2014) arXiv: 1312.3322

C Englert, F Krauss, M Spannowsky and J Thompson, Phys. Lett. B 743, 93 (2015) arXiv: 1409.8074

F Goertz, A Papaefstathiou, L L Yang and J Zurita , arXiv: 1410.3471

A Azatov, R Contino, G Panico and M Son , arXiv: 1502.00539 1502.00539

R Grober, M Muhlleitner, M Spira and J Streicher , arXiv: 1504.06577

A Biekoetter, A Knochel, M Kraemer, D Liu and F Riva arXiv: 1406.7320 [42a] Typically, O ( Λ − 4 ) $\mathcal {O}({\Lambda }^{-4})$ effects should be neglected in the context of D=6 effective Lagrangian, as they may receive contributions from D=8 operators. The exception is the observables where the SM contribution is suppressed or vanishes, in which case D=6 operators contribute at O ( Λ − 4 ) $\mathcal {O}({\Lambda }^{-4})$ , while contributions of higher-order operators are suppressed by more powers of Λ. One example is the lepton-flavour violating Higgs decays into two fermions where the SM contribution is exactly zero. In this review, I focus on the observables where the SM contribution is dominant. [42b] Except in off-shell Higgs processes [43]. However, given the current precision, these processes do not impose any meaningful constraints within the EFT framework [44–47].

F Caola and K Melnikov, Phys. Rev. D 88, 054024 (2013) arXiv: 1307.4935

C Englert and M Spannowsky, Phys. Rev. D 90(5), 053003 (2014) arXiv: 1405.0285

G Cacciapaglia, A Deandrea, G Drieu La Rochelle and J -B Flament, Phys. Rev. Lett. 113(20), 201802 (2014) arXiv: 1406.1757

A Azatov, C Grojean, A Paul and E Salvioni, Zh. Eksp. Teor. Fiz. 147, 410 (2015) arXiv: 1406.6338

C Englert, Y Soreq and M Spannowsky , arXiv: 1410.5440

D Carmi, A Falkowski, E Kuflik and T Volansky, J. High Energy Phys. 1207, 136 (2012) arXiv: 1202.3144

A Azatov, R Contino and J Galloway, J. High Energy Phys. 1204, 127 (2012) arXiv: 1202.3415

J Espinosa, C Grojean, M Muhlleitner and M Trott, J. High Energy Phys. 1205, 097 (2012) arXiv: 1202.3697

M Rauch, arXiv: 1203.6826

P P Giardino, K Kannike, M Raidal and A Strumia, J. High Energy Phys. 1206, 117 (2012) arXiv: 1203.4254

J Ellis and T You, J. High Energy Phys. 1206, 140 (2012) arXiv: 1204.0464

A Azatov, R Contino, D Del Re, J Galloway, M Grassi, et al, J. High Energy Phys. 1206, 134 (2012) arXiv: 1204.4817

M Farina, C Grojean and E Salvioni, J. High Energy Phys. 1207, 012 (2012) arXiv: 1205.0011

M Klute, R Lafaye, T Plehn, M Rauch and D Zerwas, Phys. Rev. Lett. 109, 101801 (2012) arXiv: 1205.2699

T Corbett, O Eboli, J Gonzalez-Fraile and M Gonzalez-Garcia, Phys. Rev. D 86, 075013 (2012) arXiv: 1207.1344

P P Giardino, K Kannike, M Raidal and A Strumia, Phys. Lett. B 718, 469 (2012) arXiv: 1207.1347

J Ellis and T You, J. High Energy Phys. 1209, 123 (2012) arXiv: 1207.1693

M Montull and F Riva, J. High Energy Phys. 1211, 018 (2012) arXiv: 1207.1716

J Espinosa, C Grojean, M Muhlleitner and M Trott, J. High Energy Phys. 1212, 045 (2012) arXiv: 1207.1717

D Carmi, A Falkowski, E Kuflik, T Volansky and J Zupan, J. High Energy Phys. 1210, 196 (2012) arXiv: 1207.1718

S Banerjee, S Mukhopadhyay and B Mukhopadhyaya, J. High Energy Phys. 1210, 062 (2012) arXiv: 1207.3588

F Bonnet, T Ota, M Rauch and W Winter, Phys. Rev. D 86, 093014 (2012) arXiv: 1207.4599

T Plehn and M Rauch, Europhys. Lett. 100, 11002 (2012) arXiv: 1207.6108

A Djouadi, Eur. Phys. J. C 73, 2498 (2013) arXiv: 1208.3436 1208.3436

B Batell, S Gori and L -T Wang, J. High Energy Phys. 1301, 139 (2013) arXiv: 1209.6382

T Corbett, O Eboli, J Gonzalez-Fraile and M Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013) arXiv: 1211.4580

D Choudhury, R Islam and A Kundu, Phys. Rev. D 88(1), 013014 (2013) arXiv: 1212.4652

G Belanger, B Dumont, U Ellwanger, J Gunion and S Kraml, J. High Energy Phys. 1302, 053 (2013) arXiv: 1212.5244

K Cheung, J S Lee and P-Y Tseng, J. High Energy Phys. 1305, 134 (2013) arXiv: 1302.3794

A Falkowski, F Riva and A Urbano, J. High Energy Phys. 1311, 111 (2013) arXiv: 1303.1812

P P Giardino, K Kannike, I Masina, M Raidal and A Strumia, J. High Energy Phys. 1405, 046 (2014) arXiv: 1303.3570

J Ellis and T You, J. High Energy Phys. 1306, 103 (2013) arXiv: 1303.3879

A Djouadi and G Moreau, Eur. Phys. J. C 73(9), 2512 (2013) arXiv: 1303.6591

B Dumont, S Fichet and G von Gersdorff, J. High Energy Phys. 1307, 065 (2013) arXiv: 1304.3369

P Bechtle, S Heinemeyer, O Stl, T Stefaniak and G Weiglein, Eur. Phys. J. C 74(2), 2711 (2014) arXiv: 1305.1933

G Belanger, B Dumont, U Ellwanger, J Gunion and S Kraml, Phys. Rev. D 88, 075008 (2013) arXiv: 1306.2941

M Ciuchini, E Franco, S Mishima and L Silvestrini, J. High Energy Phys. 1308, 106 (2013) arXiv: 1306.4644

P Artoisenet, P de Aquino, F Demartin, R Frederix, S Frixione, et al, J. High Energy Phys. 1311, 043 (2013) arXiv: 1306.6464

LHC Higgs Cross Section Working Group Collaboration: S Heinemeyer, et al , arXiv: 1307.1347

S Choi, S Jung and P Ko, J. High Energy Phys. 1310, 225 (2013) arXiv: 1307.3948

A Pomarol and F Riva, J. High Energy Phys. 1401, 151 (2014) arXiv: 1308.2803

H Belusca-Maito arXiv: 1404.5343

M Baak, J Cuth, J Haller, A Hoecker, R Kogler, et al , arXiv: 1407.3792

J Ellis, V Sanz and T You, J. High Energy Phys. 1503, 157 (2015) arXiv: 1410.7703

J -B Flament , arXiv: 1504.07919

S Gori and I Low, J. High Energy Phys. 1309, 151 (2013) arXiv: 1307.0496 [88a] Restricting to the tree level is the largest source of uncertainty in this analysis, as loop corrections may affect the dependence of the Higgs observables on the D=6 parameters at the 20–30% level. Nevertheless, that kind of precision is currently perfectly adequate, given the experimental uncertainties of the LHC Higgs data. As only ratios of the Higgs production cross-sections to the SM ones are considered, the uncertainty due to the PDF choice is subleading. Finally, the dependence of the Higgs observables on the D=6 parameters may depend on analysis-specific cuts employed by experiments. However, this effect is also subleading. [88b] Accidentally, with the SM parameters used in this review, the dependence on δ y d is also captured with a decent accuracy by this procedure. One can compare eq. (4.5) to NLO QCD results in ref. [89], where the coefficient in front of δ y d is found to be −0.06 for s = 8 $\sqrt {s} = 8$ TeV and −0.05 for s = $\sqrt {s} =$ 14 TeV.

R Harlander, M Mhlleitner, J Rathsman, M Spira and O Stl , arXiv: 1312.5571

J Alwall, R Frederix, S Frixione, V Hirschi, F Maltoni, et al, J. High Energy Phys. 1407, 079 (2014) arXiv: 1405.0301

Y Chen, R Harnik and R Vega-Morales, arXiv: 1503. 05855 [91a] Going beyond the minimal EFT and allowing for an invisible width would result in an exactly flat direction in the fit of the Higgs couplings to the signal strength in table 2. This flat direction corresponds to the rescaling of all the Higgs couplings by g i →𝜃 g i and the total Higgs width by Γ→𝜃 2Γ, which can be lifted only by including off-shell Higgs measurements. [91b] CMS does not quote the best-fit μ in the Z γ channel. The value in table 2 was obtained by digitizing the plot showing the expected and observed 95% CL limits on μ as a function of m h , extracting the values at m h =125 GeV and using these to calculate the best-fit μ assuming that the uncertainties are Gaussian. This is a dire reminder of how Higgs fits had to be done back in the early 2010s.

ATLAS Collaboration: G Aad, et al, Phys. Rev. D 90(11), 112015 (2014) arXiv: 1408.7084

ATLAS Collaboration: Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at s = 7 and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007 (2015)

ATLAS Collaboration: G Aad, et al, Phys. Rev. D 91(1), 012006 (2015) arXiv: 1408.5191

ATLAS Collaboration: G Aad, et al , arXiv: 1412.2641

ATLAS Collaboration: Study of the Higgs boson decaying to WW ∗ produced in association with a weak boson with the ATLAS detector at the LHC, ATLAS-CONF-2015-005 (2015)

ATLAS Collaboration: G Aad, et al , arXiv: 1501.04943

ATLAS Collaboration: G Aad, et al, J. High Energy Phys. 1501, 069 (2015) arXiv: 1409.6212

ATLAS Collaboration: G Aad, et al , arXiv: 1503.05066

ATLAS Collaboration: Search for the associated production of the Higgs boson with a top quark pair in multi-lepton final states with the ATLAS detector, ATLAS-CONF-2015-006 (2015)

CMS Collaboration: V Khachatryan, et al, Eur. Phys. J. C 74(10), 3076 (2014) arXiv: 1407.0558

CMS Collaboration: S Chatrchyan, et al, Phys. Lett. B 726, 587 (2013) arXiv: 1307.5515

CMS Collaboration: V Khachatryan, et al , arXiv: 1412.8662

CMS Collaboration: V Khachatryan, et al, J. High Energy Phys. 1409, 087 (2014) arXiv: 1408.1682

CMS Collaboration: V Khachatryan, et al , arXiv: 1502.02485

CMS Collaboration: V Khachatryan, et al , arXiv: 1410.6679 [106a] To constrain the CP-odd couplings sinϕ f and c ~ vv $\tilde c_{vv}$ within the EFT framework one should study the differential distributions in multibody Higgs decays where these couplings enter at the linear level [107–114].

F Bishara, Y Grossman, R Harnik, D J Robinson, J Shu , et al, J. High Enegy Phys. 1404, 084 (2014) arXiv: 1312.2955

Y Chen, E Di Marco, J Lykken, M Spiropulu, R Vega-Morales, et al, J. High Energy Phys. 1501, 125 (2015) arXiv: 1401.2077

M J Dolan, P Harris, M Jankowiak and M Spannowsky, Phys. Rev. D 90(7), 073008 (2014) arXiv: 1406.3322

Y Chen, A Falkowski, I Low and R Vega-Morales, Phys. Rev. D 90(11), 113006 (2014) arXiv: 1405.6723

Y Chen, R Harnik and R Vega-Morales, Phys. Rev. Lett. 113(19), 191801 (2014) arXiv: 1404.1336

M Beneke, D Boito and Y -M Wang, J. High Energy Phys. 1411, 028 (2014) arXiv: 1406.1361

F Demartin, F Maltoni, K Mawatari, B Page and M Zaro, Eur. Phys. J. C 74(9), 3065 (2014) arXiv: 1407.5089

S Berge, W Bernreuther and S Kirchner, Eur. Phys. J. C 74(11), 3164 (2014) arXiv: 1408.0798

D Stolarski and R Vega-Morales, Phys. Rev. D 86, 117504 (2012) arXiv: 1208.4840

Y Chen, N Tran and R Vega-Morales, J. High Energy Phys. 1301, 182 (2013) arXiv: 1211.1959

Y Chen and R Vega-Morales, J. High Energy Phys. 1404, 057 (2014) arXiv: 1310.2893

M Gonzalez-Alonso, A Greljo, G Isidori and D Marzocca, Eur. Phys. J. C 75(3), 128 (2015) arXiv: 1412.6038

M Gonzalez-Alonso, A Greljo, G Isidori and D Marzocca , arXiv: 1504.04018

J Ellis, V Sanz and T You, Eur. Phys. J. C 73, 2507 (2013) arXiv: 1303.0208

R Godbole, D J Miller, K Mohan and C D White, Phys. Lett. B 730, 275 (2014) arXiv: 1306.2573

C Englert, M McCullough and M Spannowsky, Phys. Rev. D 89(1), 013013 (2014) arXiv: 1310.4828

G Isidori and M Trott, J. High Energy Phys. 1402, 082 (2014) arXiv: 1307.4051

R M Godbole, D J Miller, K A Mohan and C D White , arXiv: 1409.5449

J Ellis, V Sanz and T You, J. High Energy Phys. 1407, 036 (2014) arXiv: 1404.3667

A Djouadi, R Godbole, B Mellado and K Mohan, Phys. Lett. B 723, 307 (2013) arXiv: 1301.4965

F Maltoni, K Mawatari and M Zaro, Eur. Phys. J. C 74(1), 2710 (2014) arXiv: 1311.1829

R Edezhath, arXiv: 1501.00992

CMS Collaboration: V Khachatryan, et al , arXiv: 1411.3441

A Azatov and A Paul, J. High Energy Phys. 1401, 014 (2014) arXiv: 1309.5273

C Grojean, E Salvioni, M Schlaffer and A Weiler, J. High Energy Phys. 1405, 022 (2014) arXiv: 1312.3317

M Buschmann, C Englert, D Goncalves, T Plehn and M Spannowsky, Phys. Rev. D 90(1), 013010 (2014) arXiv: 1405.7651

S Dawson, I Lewis and M Zeng, Phys. Rev. D 90(9), 093007 (2014) arXiv: 1409.6299

S Dawson, I Lewis and M Zeng , arXiv: 1501. 04103

C Arnesen, I Z Rothstein and J Zupan, Phys. Rev. Lett. 103, 151801 (2009) arXiv: 0809.1429

T Corbett, O Eboli, J Gonzalez-Fraile and M Gonzalez-Garcia, Phys. Rev. Lett. 111, 011801 (2013) arXiv: 1304. 1151 1304.1151

E Masso, J. High Energy Phys. 1410, 128 (2014) arXiv: 1406.6376

A Falkowski and F Riva, J. High Energy Phys. 1502, 039 (2015) arXiv: 1411.0669

C Bobeth and U Haisch, arXiv: 1503.04829

K Hagiwara, R Peccei, D Zeppenfeld and K Hikasa, Nucl. Phys. B 282, 253 (1987)